• Androulidakis, Y., V. Kourafalou, G. Halliwell, M. Le Hénaff, H. Kang, M. Mehari, and R. Atlas, 2016: Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region. Ocean Dyn., 66, 15591588, https://doi.org/10.1007/s10236-016-0997-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, R. L. Leung, Z. Xu, M. Li, and J. S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res., 112, C06011, https://doi.org/10.1029/2006JC003953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and Coauthors, 2008: Prediction of Atlantic tropical cyclones with the Advanced Hurricane WRF (AHW) model. 28th Conf. Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 18A.2, https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138004.htm.

  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ffield, A., 2007: Amazon and Orinoco River plumes and NBC rings: Bystanders or participants in hurricane events? J. Climate, 20, 316333, https://doi.org/10.1175/JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G., and M. McPhaden, 2009: Impact of barrier layer thickness on SST in the central tropical North Atlantic. J. Climate, 22, 285299, https://doi.org/10.1175/2008JCLI2308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1984: On the response of the ocean to a moving storm: Parameters and scales. J. Phys. Oceanogr., 14, 5978, https://doi.org/10.1175/1520-0485(1984)014<0059:OTROTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and Coauthors, 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, L20603, https://doi.org/10.1029/2012GL053335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez, O., J. Jouanno, and F. Durand, 2016: Do the Amazon and Orinoco freshwater plumes really matter for hurricane-induced ocean surface cooling? J. Geophys. Res. Oceans, 121, 21192141, https://doi.org/10.1002/2015JC011021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, I., and G. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, https://doi.org/10.1175/2010JCLI3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial pacific ocean. J. Geophys. Res., 96, 33433357, https://doi.org/10.1029/90JC01951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., C. de Boyer Montégut, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. J. Geophys. Res., 112, C10010, https://doi.org/10.1029/2006JC003954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., A. Lazar, and M. Lacarra, 2012: On the formation of barrier layers and associated vertical temperature inversions: A focus on the northwestern tropical Atlantic. J. Geophys. Res., 117, C02010, https://doi.org/10.1029/2011JC007435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, E. M. Vincent, J. Vialard, G. Madec, G. Samson, M. Ramesh Kumar, and F. Durand, 2012: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res., 117, C12020, https://doi.org/10.1029/2012JC008433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newinger, C., and R. Toumi, 2015: Potential impact of the colored Amazon and Orinoco plume on tropical cyclone intensity. J. Geophys. Res. Oceans, 120, 12961317, https://doi.org/10.1002/2014JC010533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. Mon. Wea. Rev., 142, 43264339, https://doi.org/10.1175/MWR-D-14-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, 908931, https://doi.org/10.1002/2016MS000796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pailler, K., B. Bourles, and Y. Gouriou, 1999: The barrier layer in the western tropical Atlantic Ocean. Geophys. Res. Lett., 26, 20692072, https://doi.org/10.1029/1999GL900492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, https://doi.org/10.5194/os-5-351-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. Sanford, and G. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kudryavtsev, and R. Sabia, 2014a: Multisensor observations of the Amazon-Orinoco River plume interactions with hurricanes. J. Geophys. Res. Oceans, 119, 82718295, https://doi.org/10.1002/2014JC010107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., and Coauthors, 2014b: Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv. Geophys., 35, 681722, https://doi.org/10.1007/s10712-013-9244-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J., L. Shay, B. Jaimes, and J. Brewster, 2017: Upper ocean observations in eastern Caribbean Sea reveal barrier layer within a warm core eddy. J. Geophys. Res. Oceans, 122, 10571071, https://doi.org/10.1002/2016JC012339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudzin, J., L. Shay, and W. E. Johns, 2018: The influence of the barrier layer on SST response during tropical cyclone wind forcing using idealized experiments. J. Phys. Oceanogr., 48, 14711478, https://doi.org/10.1175/JPO-D-17-0279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samson, G., H. Giordani, G. Caniaux, and F. Roux, 2009: Numerical investigation of an oceanic resonant regime induced by hurricane winds. Ocean Dyn., 59, 565586, https://doi.org/10.1007/s10236-009-0203-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and J. K. Brewster, 2010: Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Wea. Rev., 138, 21102131, https://doi.org/10.1175/2010MWR3189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., R. L. Elsberry, and P. G. Black, 1989: Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649669, https://doi.org/10.1175/1520-0485(1989)019<0649:VSOTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, https://doi.org/10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, L. Yi, Y. Ha, and Y. Sun, 2014: The opposite effects of inner and outer sea surface temperature on tropical cyclone intensity. J. Geophys. Res. Atmos., 119, 21932208, https://doi.org/10.1002/2013JD021354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., K. A. Emanuel, M. Lengaigne, J. Vialard, and G. Madec, 2014: Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6, 680699, https://doi.org/10.1002/2014MS000327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C., W. Tu, I. Pun, I.-I. Lin, and M. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. Geophys. Res. Atmos., 121, 153167, https://doi.org/10.1002/2015JD024198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane-ocean model forecasts. Mon. Wea. Rev., 137, 44104419, https://doi.org/10.1175/2009MWR2863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, https://doi.org/10.1175/MWR-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., L. Li, and C. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 16
PDF Downloads 100 100 23

The Influence of Oceanic Barrier Layers on Tropical Cyclone Intensity as Determined through Idealized, Coupled Numerical Simulations

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

The connection relating upper-ocean salinity stratification in the form of oceanic barrier layers to tropical cyclone (TC) intensification is investigated in this study. Previous works disagree on whether ocean salinity is a negligible factor on TC intensification. Relationships derived in many of these studies are based on observations, which can be sparse or incomplete, or uncoupled models, which neglect air–sea feedbacks. Here, idealized ensemble simulations of TCs performed using the Weather Research and Forecasting (WRF) Model coupled to the 3D Price–Weller–Pinkel (PWP) ocean model facilitate examination of the TC–upper-ocean system in a controlled, high-resolution, mesoscale environment. Idealized vertical ocean profiles are modeled after barrier layer profiles of the Amazon–Orinoco river plume region, where barrier layers are defined as vertical salinity gradients between the mixed and isothermal layer depths. Our results reveal that for TCs of category 1 hurricane strength or greater, thick (24–30 m) barrier layers may favor further intensification by 6%–15% when averaging across ensemble members. Conversely, weaker cyclones are hindered by thick barrier layers. Reduced sea surface temperature cooling below the TC inner core is the primary reason for additional intensification. Sensitivity tests of the results to storm translation speed, initial oceanic mixed layer temperature, and atmospheric vertical wind shear provide a more comprehensive analysis. Last, it is shown that the ensemble mean intensity results are similar when using a 3D or 1D version of PWP.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Hlywiak, jhlywiak@rsmas.miami.edu

Abstract

The connection relating upper-ocean salinity stratification in the form of oceanic barrier layers to tropical cyclone (TC) intensification is investigated in this study. Previous works disagree on whether ocean salinity is a negligible factor on TC intensification. Relationships derived in many of these studies are based on observations, which can be sparse or incomplete, or uncoupled models, which neglect air–sea feedbacks. Here, idealized ensemble simulations of TCs performed using the Weather Research and Forecasting (WRF) Model coupled to the 3D Price–Weller–Pinkel (PWP) ocean model facilitate examination of the TC–upper-ocean system in a controlled, high-resolution, mesoscale environment. Idealized vertical ocean profiles are modeled after barrier layer profiles of the Amazon–Orinoco river plume region, where barrier layers are defined as vertical salinity gradients between the mixed and isothermal layer depths. Our results reveal that for TCs of category 1 hurricane strength or greater, thick (24–30 m) barrier layers may favor further intensification by 6%–15% when averaging across ensemble members. Conversely, weaker cyclones are hindered by thick barrier layers. Reduced sea surface temperature cooling below the TC inner core is the primary reason for additional intensification. Sensitivity tests of the results to storm translation speed, initial oceanic mixed layer temperature, and atmospheric vertical wind shear provide a more comprehensive analysis. Last, it is shown that the ensemble mean intensity results are similar when using a 3D or 1D version of PWP.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Hlywiak, jhlywiak@rsmas.miami.edu
Save