Frontogenesis and Variability in Denmark Strait and Its Influence on Overflow Water

Michael A. Spall Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Michael A. Spall in
Current site
Google Scholar
PubMed
Close
,
Robert S. Pickart Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Robert S. Pickart in
Current site
Google Scholar
PubMed
Close
,
Peigen Lin Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Peigen Lin in
Current site
Google Scholar
PubMed
Close
,
Wilken-Jon von Appen Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Wilken-Jon von Appen in
Current site
Google Scholar
PubMed
Close
,
Dana Mastropole Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Dana Mastropole in
Current site
Google Scholar
PubMed
Close
,
H. Valdimarsson Marine and Freshwater Research Institute, Reykjavik, Iceland

Search for other papers by H. Valdimarsson in
Current site
Google Scholar
PubMed
Close
,
Thomas W. N. Haine The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Thomas W. N. Haine in
Current site
Google Scholar
PubMed
Close
, and
Mattia Almansi The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Mattia Almansi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael A. Spall, mspall@whoi.edu

Abstract

A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael A. Spall, mspall@whoi.edu
Save
  • Aagaard, K. and S.-A. Malmberg, 1978: Low-frequency characteristics of the Denmark Strait overflow. ICES CM 1978/C:47, International Council for the Exploration of the Sea, Copenhagen, Denmark, 22 pp.

  • Almansi, M., T. W. N. Haine, R. S. Pickart, M. G. Magaldi, R. Gelderloos, and D. Mastropole, 2017: High-frequency variability in the circulation and hydrography of the Denmark Strait overflow from a high-resolution numerical model. J. Phys. Oceanogr., 47, 29993013, https://doi.org/10.1175/JPO-D-17-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, L. H. N., 1955: Deep water movements in the North Atlantic as a link between climatic changes around Iceland and biological productivity of the English Channel and Celtic Sea. J. Mar. Res., 14, 347362.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The era-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates and pathways. J. Geophys. Res., 99, 12 31912 341, https://doi.org/10.1029/94JC00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fristedt, T., R. Hietala, and P. Lundberg, 1999: Stability properties of a barotropic surface-water jet observed in the Denmark Strait. Tellus, 51, 979989, https://doi.org/10.3402/tellusa.v51i5.14506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B., and Coauthors, 2016: Upstream sources of the Denmark Strait overflow: Observations from a high-resolution mooring array. Deep-Sea Res. I, 112, 94112, https://doi.org/10.1016/j.dsr.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., P. E. Isachsen, W.-J. von Appen, J. Albretsen, and A. Sundfjord, 2016: Eddy-driven recirculation of Atlantic Water in Fram Strait. Geophys. Res. Lett., 43, 34063414, https://doi.org/10.1002/2016GL068323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Håvik, L., K. Våge, R. S. Picakrt, B. Harden, W.-J. von Appen, S. Jósson, and S. Østerhus, 2017: Structure and variability of the Shelfbreak East Greenland Current north of Denmark Strait. J. Phys. Oceanogr., 47, 26312646, https://doi.org/10.1175/JPO-D-17-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson, 2012: Variability of the Denmark Strait overflow: Moored time series from 1996–2011. J. Geophys. Res., 117, https://doi.org/10.1029/2012JC008244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., M. Moritz, N. Nunes, D. Quadfasel, K. Larsen, B. Hansen, H. Valdimarsson, and S. Jonsson, 2017: Revised transport estimates of the Denmark Strait Overflow. J. Geophys. Res., 122, 34343450, https://doi.org/10.1002/2017JC012803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Käse, R. H., J. B. Girton, and T. B. Sanford, 2003: Structure and variability of the Denmark Strait overflow: Model and observations. J. Geophys. Res., 108, 3181, https://doi.org/10.1029/2002JC001548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macrander, A., R. H. Käse, U. Send, H. Valdimarsson, and S. Jonsson, 2007: Spatial and temporal structure of the Denmark Strait Overflow revealed by acoustic observations. Ocean Dyn., 57, 7589, https://doi.org/10.1007/s10236-007-0101-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastropole, D., R. S. Pickart, H. Valdimarsson, K. Våge, K. Jochumsen, and J. Girton, 2017: On the hydrography of Denmark Strait. J. Geophys. Res. Oceans, 122, 306321, https://doi.org/10.1002/2016JC012007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, https://doi.org/10.1016/0967-0637(96)00037-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and J. Molemaker, 2011: Baroclinic frontal arrest: A sequel to unstable frontogenesis. J. Phys. Oceanogr., 41, 601619, https://doi.org/10.1175/2010JPO4493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, A., K. Borenas, R. Hietala, and P. Lundberg, 2003: Hydraulic estimates of Denmark Strait overflow. J. Geophys. Res., 108, 3095, https://doi.org/10.1029/2001JC001283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., R. Beardlsey, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., M. Spall, D. Torres, K. V. H. Valdimarsson, C. Nobre, G. Moore, S. Jonsson, and D. Mastropole, 2017: The North Icelandic Jet and its relationship to the North Icelandic Irminger Current. J. Mar. Res., 75, 605639, https://doi.org/10.1357/002224017822109505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, C., 1978: Overflow water variability in Denmark Strait. ICES J. Mar. Sci., 21, 19.

  • Smith, P. C., 1976: Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceanogr., 6, 355371, https://doi.org/10.1175/1520-0485(1976)006<0355:BIITDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1997: Baroclinic jets in confluent flow. J. Phys. Oceanogr., 27, 10541071, https://doi.org/10.1175/1520-0485(1997)027<1054:BJICF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. F. Price, 1998: Mesoscale variability in Denmark Strait: The PV outflow hypothesis. J. Phys. Oceanogr., 28, 15981623, https://doi.org/10.1175/1520-0485(1998)028<1598:MVIDST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, H. Valdimarsson, S. Jónsson, D. J. Torres, S. Østerhus, and T. Eldevik, 2011: Significant role of the North Icelandic Jet in the formation of Denmark Strait overflow water. Nat. Geosci., 4, 723727, https://doi.org/10.1038/ngeo1234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. Pickart, M. Spall, G. Moore, H. Valdimarsson, D. Torres, S. Erofeeva, and J. Nilsen, 2013: Revised circulation scheme north of the Denmark Strait. Deep-Sea Res. I, 79, 2039, https://doi.org/10.1016/j.dsr.2013.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., G. Moore, S. Jonsson, and H. Valdimarsson, 2015: Water mass transformation in the Iceland Sea. Deep-Sea Res. I, 101, 98109, https://doi.org/10.1016/j.dsr.2015.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1975: The role of models in tracer studies. Numerical Models of the Ocean Circulation, National Academy of Sciences, 133–146.

  • von Appen, W.-J., D. Mastropole, R. S. Pickart, H. Valdimarsson, S. Jonsson, and J. Girton, 2017: On the nature of the mesoscale variability in Denmark Strait. J. Phys. Oceanogr., 47, 567582, https://doi.org/10.1175/JPO-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J., 1989: Internal hydraulic control in rotating fluids – Applications to oceans. Geophys. Astrophys. Fluid Dyn., 48, 169192, https://doi.org/10.1080/03091928908219532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J., A. Leetmaa, and R. Knox, 1974: Rotating hydraulics of strait and sill flows. Geophys. Fluid Dyn., 6, 101125, https://doi.org/10.1080/03091927409365790.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 691 295 13
PDF Downloads 398 96 5