• Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, https://doi.org/10.1063/1.869433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aurell, E., G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, 1997: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys. A.: Math. Gen., 30, 126, https://doi.org/10.1088/0305-4470/30/1/003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babiano, A., C. Basdevant, P. Le Roy, and R. Sadourny, 1990: Relative dispersion in two-dimensional turbulence. J. Fluid Mech., 214, 535557, https://doi.org/10.1017/S0022112090000258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, and K. G. Speer, 2016: Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico. Geophys. Res. Lett., 43, 10 85610 863, https://doi.org/10.1002/2016GL069405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, https://doi.org/10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1987: A Lagrangian analysis of turbulent diffusion. Rev. Geophys., 25, 799822, https://doi.org/10.1029/RG025i004p00799.

  • Bennett, A., 2006: Lagrangian Fluid Dynamics. Cambridge University Press, 310 pp.

    • Crossref
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., 2018: Drifter technology and impacts for sea surface temperature, sea-level pressure, and ocean circulation studies. Observing the Oceans in Real Time, R. Venkatesan et al., Eds., Springer, 37–57.

    • Crossref
    • Export Citation
  • Centurioni, L. R., A. Horányi, C. Cardinali, E. Charpentier, and R. Lumpkin, 2017: A global ocean observing system for measuring sea level atmospheric pressure: Effects and impacts on numerical weather prediction. Bull. Amer. Meteor. Soc., 98, 231238, https://doi.org/10.1175/BAMS-D-15-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Er-El, J., and R. L. Peskin, 1981: Relative diffusion of constant-level balloons in the Southern Hemisphere. J. Atmos. Sci., 38, 22642274, https://doi.org/10.1175/1520-0469(1981)038<2264:RDOCLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foussard, A., S. Berti, X. Perrot, and G. Lapeyre, 2017: Relative dispersion in generalized two-dimensional turbulence. J. Fluid Mech., 821, 358383, https://doi.org/10.1017/jfm.2017.253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gon, Y. J., K. S. Yong, and K. H. Seong, 2018: Spectral descriptions of submesoscale surface circulation in a coastal region. J. Geophys. Res. Oceans, 123, 42244249, https://doi.org/10.1029/2016JC012517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graff, L. S., S. Guttu, and J. H. LaCasce, 2015: Relative dispersion in the atmosphere from reanalysis winds. J. Atmos. Sci., 72, 27692785, https://doi.org/10.1175/JAS-D-14-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffa, A., K. Owens, L. Piterbarg, and B. Rozovskii, 1995: Estimates of turbulence parameters from Lagrangian data using a stochastic particle model. J. Mar. Res., 53, 371401, https://doi.org/10.1357/0022240953213151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., 2015: Lagrangian coherent structures. Annu. Rev. Fluid Mech., 47, 137162, https://doi.org/10.1146/annurev-fluid-010313-141322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., A. C. Poje, T. M. Özgökmen, and P. Martin, 2008: Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Modell., 22, 4865, https://doi.org/10.1016/j.ocemod.2008.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, Z. D. Garraffo, and L. Piterbarg, 2012: Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Modell., 42, 3149, https://doi.org/10.1016/j.ocemod.2011.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, A. C. Poje, and M.-P. Lelong, 2014: How does drifter position uncertainty affect ocean dispersion estimates? J. Atmos. Oceanic Technol., 31, 28092828, https://doi.org/10.1175/JTECH-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horányi, A., C. Cardinali, and L. Centurioni, 2017: The global numerical weather prediction impact of mean-sea-level pressure observations from drifting buoys. Quart. J. Roy. Meteor. Soc., 143, 974985, https://doi.org/10.1002/qj.2981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hormann, V., L. Centurioni, A. Mahadevan, S. Essink, E. D’Asaro, and B. P. Kumar, 2016: Variability of near-surface circulation and sea surface salinity observed from Lagrangian drifters in the northern Bay of Bengal during the waning 2015 Southwest Monsoon. Oceanography, 29 (2), 124133, https://doi.org/10.5670/oceanog.2016.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeger, G. S., and A. Mahadevan, 2018: Submesoscale-selective compensation of fronts in a salinity-stratified ocean. Sci. Adv., 4, e1701504, https://doi.org/10.1126/sciadv.1701504.

    • Crossref
    • Export Citation
  • Kirwan, A. D., G. J. McNally, E. Reyna, and W. J. Merrell, 1978: The near-surface circulation of the eastern North Pacific. J. Phys. Oceanogr., 8, 937945, https://doi.org/10.1175/1520-0485(1978)008<0937:TNSCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I., J. H. LaCasce, and K. A. Orvik, 2009: Relative dispersion in the Nordic Seas. J. Mar. Res., 67, 411433, https://doi.org/10.1357/002224009790741102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417, https://doi.org/10.1063/1.1762301.

  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., 2010: Relative displacement probability distribution functions from balloons and drifters. J. Mar. Res., 68, 433457, https://doi.org/10.1357/002224010794657155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2016: Estimating Eulerian energy spectra from drifters. Fluids, 1, 33, https://doi.org/10.3390/fluids1040033.

  • LaCasce, J. H., and A. Bower, 2000: Relative dispersion in the subsurface North Atlantic. J. Mar. Res., 58, 863894, https://doi.org/10.1357/002224000763485737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, https://doi.org/10.1357/002224003322201205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J.-T., 1972: Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atmos. Sci., 29, 394396, https://doi.org/10.1175/1520-0469(1972)029<0394:RDITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2015: A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, https://doi.org/10.1017/jfm.2014.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and Coauthors, 2014: Mixing to monsoons: Air-sea interactions in the Bay of Bengal. Eos, Trans. Amer. Geophys. Union, 95, 269270, https://doi.org/10.1002/2014EO300001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, https://doi.org/10.1029/2010JC006338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundgren, T. S., 1981: Turbulent pair dispersion and scalar diffusion. J. Fluid Mech., 111, 2757, https://doi.org/10.1017/S0022112081002280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., G. Spiro Jaeger, M. Freilich, M. M. Omand, E. Shroyer, and D. Sengupta, 2016: Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange. Oceanography, 29 (2), 7281, https://doi.org/10.5670/oceanog.2016.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N., R. Lumpkin, and L. Centurioni, 2013: Ocean surface circulation. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., Elsevier, 283–304.

    • Crossref
    • Export Citation
  • Morel, P., and M. Larceveque, 1974: Relative dispersion of constant-level balloons in the 200-mb general circulation. J. Atmos. Sci., 31, 21892196, https://doi.org/10.1175/1520-0469(1974)031<2189:RDOCBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., W. H. Jasperson, and K. S. Gage, 1986: Horizontal spectra of atmospheric tracers measured during the Global Atmospheric Sampling Program. J. Geophys. Res., 91, 13 20113 209, https://doi.org/10.1029/JD091iD12p13201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001: The world ocean surface circulation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., Elsevier, 193–204.

    • Crossref
    • Export Citation
  • Niiler, P. P., A. S. Sybrandy, K. Bi, P. M. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of holey-sock and TRISTAR drifters. Deep-Sea Res. I, 42, 19511955, https://doi.org/10.1016/0967-0637(95)00076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., A. C. Haza, T. M. Özgökmen, M. G. Magaldi, and Z. D. Garraffo, 2010: Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modell., 31, 3650, https://doi.org/10.1016/j.ocemod.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and Coauthors, 2018: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479509, https://doi.org/10.1175/JPO-D-16-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, 110A, 709737, https://doi.org/10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., and H. Stommel, 1948: Note on eddy diffusion in the sea. J. Meteor., 5, 238240, https://doi.org/10.1175/1520-0469(1948)005<0238:NOEDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., S. R. Jayne, S. Yoshida, A. M. Macdonald, E. Douglass, and K. Buesseler, 2013: Short-term dispersal of Fukushima-derived radionuclides off Japan: Modeling efforts and model-data intercomparison. Biogeosciences, 10, 49734990, https://doi.org/10.5194/bg-10-4973-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., J. K. Llopiz, L. J. Pratt, and M. S. Lozier, 2014: Dispersal pathways of American eel larvae from the Sargasso Sea. Limnol. Oceanogr., 59, 17041714, https://doi.org/10.4319/lo.2014.59.5.1704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, S., H. T. Pham, S. Ramachandran, J. D. Nash, A. Tandon, J. Buckley, A. A. Lotliker, and M. M. Omand, 2016: The interplay between submesoscale instabilities and turbulence in the surface layer of the Bay of Bengal. Oceanography, 29 (2), 146157, https://doi.org/10.5670/oceanog.2016.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., D. L. Rudnick, T. Farrar, B. Lim, K. Venayagamoorthy, L. C. St. Laurent, A. Garanaik, and J. N. Moum, 2016: Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification. Oceanography, 29 (2), 6271, https://doi.org/10.5670/oceanog.2016.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: Frontogenesis by horizontal wind deformation fields. J. Atmos. Sci., 23, 455465, https://doi.org/10.1175/1520-0469(1966)023<0455:FBHWDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. J., 1971: Some data on the distance-neighbour function for relative diffusion. J. Fluid Mech., 47, 601607, https://doi.org/10.1017/S0022112071001253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Wijesekera, H. W., and Coauthors, 2016: ASIRI: An ocean–atmosphere initiative for Bay of Bengal. Bull. Amer. Meteor. Soc., 97, 18591884, https://doi.org/10.1175/BAMS-D-14-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H. M., and Coauthors, 2009: An integrated global observing system for sea surface temperature using satellites and in situ data: Research to operations. Bull. Amer. Meteor. Soc., 90, 8, https://doi.org/10.1175/2008BAMS2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 15
PDF Downloads 69 69 16

Can We Detect Submesoscale Motions in Drifter Pair Dispersion?

View More View Less
  • 1 MIT–WHOI Joint Program in Oceanography, Woods Hole, Massachusetts
  • 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Essink, sessink@mit.edu

Abstract

A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sebastian Essink, sessink@mit.edu
Save