• Andrade, I., P. Sangra, S. Hormazabal, and M. Correa-Ramirez, 2014: Island mass effect in the Juan Fernández Archipelago (33°S), Southeastern Pacific. Deep-Sea Res. I, 84, 8699, https://doi.org/10.1016/j.dsr.2013.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aristegui, J., and M. F. Montero, 2005: Temporal and spatial changes in plankton respiration and biomass in the Canary Islands region: the effect of mesoscale variability. J. Mar. Syst., 54, 6582, https://doi.org/10.1016/j.jmarsys.2004.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aristegui, J., P. Sangra, S. Hernández-León, M. Canton, A. Hernandez-Guerra, and J. L. Kerling, 1994: Island induced eddies in the Canary Islands. Deep-Sea Res., 41, 15091525, https://doi.org/10.1016/0967-0637(94)90058-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkley, R. A., 1972: Johnston Atoll’s wake. J. Mar. Res., 30, 201216.

  • Blasius, H., 1908: The boundary layers in fluids with little friction. Z. Math. Phys., 56, 137.

  • Bonjean, F., and G. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, M. J., D. E. Dietrich, and C. A. Lin, 1996: Observations and modeling of mesoscale ocean circulation near a small island. Small Islands Marine Science and Sustainable Development, G. A. Maul, Ed., Coastal and Estuarine Studies, Vol. 51, Amer. Geophys. Union, 18–35, https://doi.org/10.1029/CE051p0018.

    • Crossref
    • Export Citation
  • Boyer, D. L., and P. A. Davies, 1982: Flow past a circular cylinder on a β-plane. Philos. Trans. Roy. Soc. London, 306A, 533556, https://doi.org/10.1098/rsta.1982.0094.

    • Search Google Scholar
    • Export Citation
  • Caldeira, R. M. A., and P. Sangra, 2012: Complex geophysical wake flows: Madeira Archipelago case study. Ocean Dyn., 62, 683700, https://doi.org/10.1007/s10236-012-0528-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldeira, R. M. A., P. Marchesiello, N. P. Nezlin, P. M. DiGiacomo, and J. C. McWilliams, 2005: Island wakes in the Southern California Bight. J. Geophys. Res., 110, C11012, https://doi.org/10.1029/2004JC002675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldeira, R. M. A., A. Stenger, X. Couvelard, I. B. Araujo, P. Testor, and A. Lorenzo, 2014: Evolution of an oceanic anticyclone in the lee of Madeira Island: In situ and remote sensing survey. J. Geophys. Res. Oceans, 119, 11951216, https://doi.org/10.1002/2013JC009493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M. H., T. Y. Tang, C. R. Ho, and S. Y. Chao, 2013: Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. Oceans, 118, 15081519, https://doi.org/10.1002/jgrc.20151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. Deszoeke, M. Schax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, T. D., F. Nencioli, V. S. Kuwahara, C. Leonard, W. Black, Y. M. Rii, R. R. Bidigare, and Q. Zhang, 2008: Physical and bio-optical observations of oceanic cyclones west of the island of Hawai’i. Deep-Sea Res. II, 55, 11951217, https://doi.org/10.1016/j.dsr2.2008.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., and J. C. McWilliams, 2007: A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res., 27, 12331248, https://doi.org/10.1016/j.csr.2007.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, and A. F. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, https://doi.org/10.1175/JPO3047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESR, 2009: OSCAR third degree resolution ocean surface currents, version 1. PO.DAAC, accessed 22 August 2018, https://doi.org/10.5067/OSCAR-03D01.

    • Crossref
    • Export Citation
  • Hernández-León, S., 1991: Accumulation of mesozooplankton in a wake area as a causative mechanism of the “island-mass effect.” Mar. Biol., 109, 141147, https://doi.org/10.1007/BF01320241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heron, S. F., E. J. Metzger, and W. J. Skirving, 2006: Seasonal variations of the ocean surface circulation in the vicinity of Palau. J. Oceanogr., 62, 413426, https://doi.org/10.1007/s10872-006-0065-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., E. D. Barton, and J. H. Simpson, 1990: The effects of flow disturbance by an oceanic island. J. Mar. Res., 48, 5573, https://doi.org/10.1357/002224090784984623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., D. P. Stevens, and G. R. Bigg, 1996: Eddy formation behind the tropical island of Aldabra. Deep-Sea Res. I, 43, 555578, https://doi.org/10.1016/0967-0637(96)00097-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsin, Y. C., and B. Qiu, 2012: Seasonal fluctuations of the surface North Equatorial Countercurrent (NECC) across the Pacific Basin. J. Geophys. Res., 117, C06001, https://doi.org/10.1029/2011JC007794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., M. H. Chang, C. C. Lin, S. J. Huang, and C. R. Ho, 2017: Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery. Remote Sens. Environ., 193, 5464, https://doi.org/10.1016/j.rse.2017.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jimenez, B., P. Sangra, and E. Mason, 2008: A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands. Ocean Modell., 22, 146157, https://doi.org/10.1016/j.ocemod.2008.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., N. Espana, F. Syamsudin, K. Richards, T. Jensen, P. Dutrieux, and A. Ishida, 2009: Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current system during the 2006/07 El Nino and 2007/08 La Nina. J. Oceanogr., 65, 325333, https://doi.org/10.1007/s10872-009-0030-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 1990: Fluid Mechanics. 4th ed. Elsevier, 904 pp.

  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., R. M. Kovach, S. Pawson, and G. Vernieres, 2017: The 2015/16 El Nino event in context of the MERRA-2 reanalysis: A comparison of the Tropical Pacific with 1982/83 and 1997/98. J. Climate, 30, 48194842, https://doi.org/10.1175/JCLI-D-16-0800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., G. Flierl, and T. Peacock, 2018: The generation of Rossby waves and wake eddies by small islands. J. Mar. Res., 76, 6391, https://doi.org/10.1357/002224018824845929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, https://doi.org/10.1029/95JC03204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and H. Sasaki, 2013a: Generation of the North Equatorial Undercurrent jets by triad baroclinic Rossby wave interactions. J. Phys. Oceanogr., 43, 26822698, https://doi.org/10.1175/JPO-D-13-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, S. Chen, and Y. Kashino, 2013b: Quasi-stationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40, 21832187, https://doi.org/10.1002/grl.50394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roshko, A., 1954: On the development of turbulent wakes from vortex streets. National Advisory Committee for Aeronautics Rep. 1191, 25 pp.

  • Rudnick, D. L., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28, 20452048, https://doi.org/10.1029/2000GL012265.

  • Rudnick, D. L., and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, https://doi.org/10.1029/2010JC006849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., J. T. Sherman, and A. P. Wu, 2018: Depth-average velocity from Spray underwater gliders. J. Atmos. Oceanic Technol., 35, 16651673, https://doi.org/10.1175/JTECH-D-17-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangra, P., and Coauthors, 2007: On the nature of oceanic eddies shed by the Island of Gran Canaria. Deep-Sea Res. I, 54, 687709, https://doi.org/10.1016/j.dsr.2007.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schonau, M. C., and D. L. Rudnick, 2015: Glider observations of the North Equatorial Current in the western tropical Pacific. J. Geophys. Res. Oceans, 120, 35863605, https://doi.org/10.1002/2014JC010595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J., R. E. Davis, W. B. Owens, and J. Valdes, 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, https://doi.org/10.1109/48.972076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings: Evidence for stochastic reheating of the oceanic lithosphere. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teague, W. J., G. A. Jacobs, H. T. Perkins, and J. W. Book, 2002: Low-frequency current observations in the Korea/Tsushima Strait. J. Phys. Oceanogr., 32, 16211641, https://doi.org/10.1175/1520-0485(2002)032<1621:LFCOIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teague, W. J., P. A. Hwang, G. A. Jacobs, J. W. Book, and H. T. Perkins, 2005: Transport variability across the Korea/Tsushima Strait and the Tsushima Island wake. Deep-Sea Res. II, 52, 17841801, https://doi.org/10.1016/j.dsr2.2003.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teinturier, S., A. Stegner, H. Didelle, and S. Viboud, 2010: Small-scale instabilities of an island wake flow in a rotating shallow-water layer. Dyn. Atmos. Oceans, 49, 124, https://doi.org/10.1016/j.dynatmoce.2008.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, J. T. Sherman, W. B. Owens, and L. George, 2017: Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers. J. Atmos. Oceanic Technol., 34, 309333, https://doi.org/10.1175/JTECH-D-16-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Walker, J. D. A., and K. Stewartson, 1972: The flow past a circular cylinder in a rotating frame. Z. Angew. Math. Phys., 23, 745752, https://doi.org/10.1007/BF01602641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., W. T. Liu, Q. Liu, and M. Nonaka, 2001: Far-reaching effects of the Hawaiian Islands on the Pacific ocean-atmosphere system. Science, 292, 20572060, https://doi.org/10.1126/science.1059781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zdravkovich, M., 2000: Flow around Circular Cylinders. Vol. 1: Fundamentals, Oxford University Press, 694 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 17
PDF Downloads 101 101 13

Glider Observations of a Mesoscale Oceanic Island Wake

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

In this study, a 2-yr time series of velocity profiles to 1000 m from meridional glider surveys is used to characterize the wake in the lee of a large island in the western tropical North Pacific Ocean, Palau. Surveys were completed along sections to the east and west of the island to capture both upstream and downstream conditions. Objectively mapped in time and space, mean sections of velocity show the incident westward North Equatorial Current accelerating around the island of Palau, increasing from 0.1 to 0.2 m s−1 at the surface. Downstream of the island, elevated velocity variability and return flow in the lee are indicative of boundary layer separation. Isolating for periods of depth-average westward flow reveals a length scale in the wake that reflects local details of the topography. Eastward flow is shown to produce an asymmetric wake. Depth-average velocity time series indicate that energetic events (on time scales from weeks to months) are prevalent. These events are associated with mean vorticity values in the wake up to 0.3f near the surface and with instantaneous values that can exceed f (the local Coriolis frequency) during periods of sustained, anomalously strong westward flow. Thus, ageostrophic effects become important to first order.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristin L. Zeiden, kfitzmorris@ucsd.edu

Abstract

In this study, a 2-yr time series of velocity profiles to 1000 m from meridional glider surveys is used to characterize the wake in the lee of a large island in the western tropical North Pacific Ocean, Palau. Surveys were completed along sections to the east and west of the island to capture both upstream and downstream conditions. Objectively mapped in time and space, mean sections of velocity show the incident westward North Equatorial Current accelerating around the island of Palau, increasing from 0.1 to 0.2 m s−1 at the surface. Downstream of the island, elevated velocity variability and return flow in the lee are indicative of boundary layer separation. Isolating for periods of depth-average westward flow reveals a length scale in the wake that reflects local details of the topography. Eastward flow is shown to produce an asymmetric wake. Depth-average velocity time series indicate that energetic events (on time scales from weeks to months) are prevalent. These events are associated with mean vorticity values in the wake up to 0.3f near the surface and with instantaneous values that can exceed f (the local Coriolis frequency) during periods of sustained, anomalously strong westward flow. Thus, ageostrophic effects become important to first order.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristin L. Zeiden, kfitzmorris@ucsd.edu
Save