• Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, https://doi.org/10.1002/jgrc.20066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101, https://doi.org/10.1016/j.dsr2.2004.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., and P. Klein, 2010: Can oceanic submesoscale processes be observed with satellite altimetry? Geophys. Res. Lett., 37, L22602, https://doi.org/10.1029/2010GL045057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, J. T. Farrar, M. J. Molemaker, J. C. McWilliams, and J. Gula, 2019: Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity. Prog. Oceanogr., 173, 256350, https://doi.org/10.1016/j.pocean.2018.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, S., L.-L. Fu, S. Cherchali, and P. Vaze, 2018: Surface Water and Ocean Topography Mission (SWOT) Project science requirements document. Tech. Rep. JPL D-61923, Jet Propulsion Laboratory, California Institute of Technology, 29 pp., https://swot.jpl.nasa.gov/docs/D-61923_SRD_Rev_B_20181113.pdf.

  • Dibarboure, G., F. Boy, J. D. Desjonqueres, S. Labroue, Y. Lasne, N. Picot, J. C. Poisson, and P. Thibaut, 2014: Investigating short-wavelength correlated errors on low-resolution mode altimetry. J. Atmos. Oceanic Technol., 31, 13371362, https://doi.org/10.1175/JTECH-D-13-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., and P. F. Worcester, 1998: Resonant diurnal internal tides in the North Atlantic. Geophys. Res. Lett., 25, 21892192, https://doi.org/10.1029/98GL01583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, and M. A. Dzieciuch, 2011: On the predictability of mode-1 internal tides. Deep-Sea Res. I, 58, 677698, https://doi.org/10.1016/j.dsr.2011.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, https://doi.org/10.1029/2003GL017676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 821, https://doi.org/10.1029/94JC01894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esteban Fernandez, D., L.-L. Fu, B. Pollard, and P. Vaze, 2017: SWOT Project mission performance and error budget. Tech. Rep., Jet Propulsion Laboratory, California Institute of Technology, 117 pp.

  • Ferrari, R., 2011: A frontal challenge for climate models. Science, 332, 316317, https://doi.org/10.1126/science.1203632.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, https://doi.org/10.1175/2007JPO3788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 1981: Observations and models of inertial waves in the deep ocean. Rev. Geophys., 19, 141170, https://doi.org/10.1029/RG019i001p00141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and R. Ferrari, 2008: Observing oceanic submesoscale processes from space. Eos, Trans. Amer. Geophys. Union, 89, 488499, https://doi.org/10.1029/2008EO480003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Mixing in the ocean interior. Dyn. Atmos. Oceans, 3, 239265, https://doi.org/10.1016/0377-0265(79)90011-3.

  • Garrett, C., and W. H. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. H. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. H. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, https://doi.org/10.1146/annurev.fl.11.010179.002011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Kantha, L. H., and C. C. Tierney, 1997: Global baroclinic tides. Prog. Oceanogr., 40, 163178, https://doi.org/10.1016/S0079-6611(97)00028-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2007: Oceanic isopycnal slope spectra. Part II: Turbulence. J. Phys. Oceanogr., 37, 12321245, https://doi.org/10.1175/JPO3074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, A.-M. Tréguier, D. Iovino, G. Madec, S. Masson, and K. Takahashi, 2010: Modifications of gyre circulation by sub-mesoscale physics. Ocean Modell., 34, 115, https://doi.org/10.1016/j.ocemod.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., D. Iovino, L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, and K. Takahashi, 2012: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 43–44, 7793, https://doi.org/10.1016/j.ocemod.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2014: Eddy effects on biogeochemistry. Nature, 506, 168169, https://doi.org/10.1038/nature13048.

  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, https://doi.org/10.1175/JPO2949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J. and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, version 3.06. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Pro. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Munk, W., and N. Phillips, 1968: Coherence and band structure of inertial motion in the sea. Rev. Geophys., 6, 447472, https://doi.org/10.1029/RG006i004p00447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, https://doi.org/10.1029/2010RG000329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., P. Klein, M. Dunphy, and S. L. Gentil, 2017: Low-mode internal tides and balanced dynamics disentanglement in altimetric observations: Synergy with surface density observations. J. Geophys. Res. Oceans, 122, 21432155, https://doi.org/10.1002/2016JC012214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the world ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, https://doi.org/10.1175/JPO-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft, 2012: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res., 117, C12012, https://doi.org/10.1029/2012JC008364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016a: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., S. T. Gille, T. K. Chereskin, and D. Menemenlis, 2016b: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 11 30411 311, https://doi.org/10.1002/2016GL071349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J. Phys. Oceanogr., 42, 12331241, https://doi.org/10.1175/JPO-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017a: Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. J. Geophys. Res. Oceans, 122, 25192538, https://doi.org/10.1002/2016JC012331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017b: Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans, 122, 78037821, https://doi.org/10.1002/2017JC013009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, https://doi.org/10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and A. Cazenave, Eds., 2017: Satellite Altimetry Over Oceans and Land Surfaces. CRC Press, 644 pp.

    • Crossref
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Open submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., C. N. Flagg, K. Donohue, and H. T. Rossby, 2010: Wavenumber spectrum in the Gulf Stream from shipboard ADCP observations and comparison with altimetry measurements. J. Phys. Oceanogr., 40, 840844, https://doi.org/10.1175/2009JPO4330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Fu, H. S. Torres, S. Chen, B. Qiu, and D. Menemenlis, 2019: On the spatial scales to be resolved by the surface water and ocean topography Ka-band radar interferometer. J. Atmos. Oceanic Technol., 36, 8799, https://doi.org/10.1175/JTECH-D-18-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2013: Baroclinic motions and energetics as measured by altimeters. J. Atmos. Oceanic Technol., 30, 140150, https://doi.org/10.1175/JTECH-D-12-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and A. E. Gill, 1976: Observations of equatorially trapped waves in Pacific sea level variations. Deep-Sea Res. Oceanogr. Abstr., 23, 371390, https://doi.org/10.1016/0011-7471(76)90835-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Stammer, 1998: Satellite altimetry, the marine geoid, and the oceanic general circulation. Annu. Rev. Fluid Mech., 26, 219253 https://doi.org/10.1146/annurev.earth.26.1.219.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2011: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802809, https://doi.org/10.1175/2010JPO4558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanifé, O. Z., P. Vincent, L. Amarouche, J. P. Dumont, P. Thibaut, and S. Labroue, 2003: Comparison of the Ku-band range noise level and the relative sea-state bias of the Jason-1, TOPEX, and Poseidon-1 radar altimeters. Mar. Geod., 26, 201238, https://doi.org/10.1080/714044519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2017: Mapping the nonstationary internal tide with satellite altimetry. J. Geophys. Res. Oceans, 112, 539554, https://doi.org/10.1002/2016JC012487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538557, https://doi.org/10.1175/JPO-D-12-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2016: Internal tide oceanic tomography. Geophys. Res. Lett., 43, 91579164, https://doi.org/10.1002/2016GL070567.

  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 16
PDF Downloads 58 58 15

Some Expectations for Submesoscale Sea Surface Height Variance Spectra

View More View Less
  • 1 California Institute of Technology, Pasadena, California
  • 2 University of California San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

In anticipation of the Surface Water and Ocean Topography (SWOT) wide-swath altimetry mission, this study reviews expectations for sea surface height (SSH) variance spectra at wavelengths of 10–100 km. Kinetic energy spectra from in situ observations and numerical simulations indicate that SSH variance spectra associated with balanced flow drop off steeply with wavenumber, with at least the negative fourth power of the wavenumber. Such a steep drop-off implies that even drastic reductions in altimetry noise yield only a modest improvement in the resolution of balanced flow. This general expectation is made concrete by extrapolating SSH variance spectra from existing altimetry to submesoscales, the results of which suggest that in the extratropics (poleward of 20° latitude) SWOT will improve the resolution from currently about 100 km to a median of 51 or 74 km, depending on whether or not submesoscale balanced flows are energetic. Internal waves, in contrast to balanced flow, give rise to SSH variance spectra that drop off relatively gently with wavenumber, so SSH variance should become strongly dominated by internal waves in the submesoscale range. In situ observations of the internal-wave field suggest that the internal-wave signal accessible by SWOT will be largely dominated by internal tides. The internal-wave continuum is estimated to have a spectral level close to but somewhat lower than SWOT’s expected noise level.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jörn Callies, jcallies@caltech.edu

Abstract

In anticipation of the Surface Water and Ocean Topography (SWOT) wide-swath altimetry mission, this study reviews expectations for sea surface height (SSH) variance spectra at wavelengths of 10–100 km. Kinetic energy spectra from in situ observations and numerical simulations indicate that SSH variance spectra associated with balanced flow drop off steeply with wavenumber, with at least the negative fourth power of the wavenumber. Such a steep drop-off implies that even drastic reductions in altimetry noise yield only a modest improvement in the resolution of balanced flow. This general expectation is made concrete by extrapolating SSH variance spectra from existing altimetry to submesoscales, the results of which suggest that in the extratropics (poleward of 20° latitude) SWOT will improve the resolution from currently about 100 km to a median of 51 or 74 km, depending on whether or not submesoscale balanced flows are energetic. Internal waves, in contrast to balanced flow, give rise to SSH variance spectra that drop off relatively gently with wavenumber, so SSH variance should become strongly dominated by internal waves in the submesoscale range. In situ observations of the internal-wave field suggest that the internal-wave signal accessible by SWOT will be largely dominated by internal tides. The internal-wave continuum is estimated to have a spectral level close to but somewhat lower than SWOT’s expected noise level.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jörn Callies, jcallies@caltech.edu
Save