• Baer, F., and J. J. Tribbia, 1977: On complete filtering of gravity modes through nonlinear initialization. Mon. Wea. Rev., 105, 15361539, https://doi.org/10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouksey, M., 2018: Disentangling gravity waves from balanced flow. Ph.D. thesis, Universität Hamburg, https://10.17617/2.3000108.

  • Chouksey, M., C. Eden, and N. Brüggemann, 2018: 2018: Internal gravity wave emission in different dynamical regimes. J. Phys. Oceanogr., 48, 17091730, https://doi.org/10.1175/JPO-D-17-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., M. Chouksey, and D. Olbers, 2019: Mixed Rossby–gravity wave–wave interactions. J. Phys. Oceanogr., 49, 291308, https://doi.org/10.1175/JPO-D-18-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., M. McIntyre, and W. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, https://doi.org/10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke, and U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech., 838, 541, https://doi.org/10.1017/jfm.2017.883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., I. Draghici, and H. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2018: Spontaneous imbalance in the non-hydrostatic Boussinesq equations. J. Fluid Mech., 847, 614643, https://doi.org/10.1017/jfm.2018.338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958968, https://doi.org/10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 516 pp.

  • Lorenz, E. N., 1980: Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci., 37, 16851699, https://doi.org/10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1986: On the existence of a slow manifold. J. Atmos. Sci., 43, 15471558, https://doi.org/10.1175/1520-0469(1986)043<1547:OTEOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Beitr. Phys. Atmos., 50, 253271.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and W. A. Norton, 2000: Potential vorticity inversion on a hemisphere. J. Atmos. Sci., 57, 12141235, https://doi.org/10.1175/1520-0469(2000)057<1214:PVIOAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp.

    • Crossref
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, https://doi.org/10.1175/JAS3953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1975: The dynamics of finite-difference models of the shallow-water equations. J. Atmos. Sci., 32, 680689, https://doi.org/10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. Taylor, 2015: The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: Numerical solutions. J. Fluid Mech., 772, 508534, https://doi.org/10.1017/jfm.2015.197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., and I. Yavneh, 2004: Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61, 211223, https://doi.org/10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., and D. G. Dritschel, 2004: Optimal potential vorticity balance of geophysical flows. J. Fluid Mech., 521, 343352, https://doi.org/10.1017/S0022112004002058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warn, T., O. Bokhove, T. Shepherd, and G. Vallis, 1995: Rossby number expansions, slaving principles, and balance dynamics. Quart. J. Roy. Meteor. Soc., 121, 723739, https://doi.org/10.1002/qj.49712152313.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 31
PDF Downloads 115 115 39

Gravity Wave Emission by Shear Instability

View More View Less
  • 1 Institut für Meereskunde, Universität Hamburg, Hamburg, Germany
  • 2 Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, and MARUM, Universität Bremen, Bremen, Germany
© Get Permissions
Restricted access

Abstract

Gravity wave emission by geostrophically balanced flow is diagnosed in numerical simulations of lateral and vertical shear instabilities. The diagnostic method in use allows for a separation of balanced flow and residual wave signal up to fourth order in the Rossby number (Ro). While evidence is found for a small but finite gravity wave emission from balanced flow in a single-layer model with large lateral shear and large Ro, a vertically resolved model with moderate velocity amplitudes appropriate to the interior ocean hardly shows any wave emission. Only when static instabilities generated by the shear instability of the balanced flow are allowed can a gravity wave signal similar to the ones reported in earlier studies be detected in the vertically resolved case. This result suggests a relatively small role of spontaneous wave emission in the classical sense of Lighthill radiation, and emphasizes the role of convective or symmetric instabilities during frontogenesis for the generation of internal gravity waves in the ocean and atmosphere.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de

Abstract

Gravity wave emission by geostrophically balanced flow is diagnosed in numerical simulations of lateral and vertical shear instabilities. The diagnostic method in use allows for a separation of balanced flow and residual wave signal up to fourth order in the Rossby number (Ro). While evidence is found for a small but finite gravity wave emission from balanced flow in a single-layer model with large lateral shear and large Ro, a vertically resolved model with moderate velocity amplitudes appropriate to the interior ocean hardly shows any wave emission. Only when static instabilities generated by the shear instability of the balanced flow are allowed can a gravity wave signal similar to the ones reported in earlier studies be detected in the vertically resolved case. This result suggests a relatively small role of spontaneous wave emission in the classical sense of Lighthill radiation, and emphasizes the role of convective or symmetric instabilities during frontogenesis for the generation of internal gravity waves in the ocean and atmosphere.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de
Save