• Albert, M. F. M. A., M. D. Anguelova, A. M. M. Manders, M. Schaap, and G. de Leeuw, 2016: Parameterization of oceanic whitecap fraction based on satellite observations. Atmos. Chem. Phys., 16, 13 72513 751, https://doi.org/10.5194/acp-16-13725-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., 2008: Complex dielectric constant of sea foam at microwave frequencies. J. Geophys. Res., 113, C08001, https://doi.org/10.1029/2007JC004212.

    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., 2016: Assessing the utility of satellite-based whitecap fraction to estimate sea spray production and CO2 transfer velocity. IOP Conf. Ser.: Earth Environ. Sci., 35, 012002, https://doi.org/10.1088/1755-1315/35/1/012002.

    • Crossref
    • Export Citation
  • Anguelova, M. D., and F. Webster, 2006: Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res., 111, C03017, https://doi.org/10.1029/2005JC003158.

    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., and M. H. Bettenhausen, 2019: Whitecap fraction from satellite measurements: Algorithm description. J. Geophys. Res. Oceans, 124, 18271857, https://doi.org/10.1029/2018JC014630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anguelova, M. D., M. H. Bettenhausen, W. F. Johnston, and P. W. Gaiser, 2010: First extensive whitecap database and its use to study whitecap fraction variability. 17th Conf. on Air–Sea Interaction, Annapolis, MD, Amer. Meteor. Soc., 5.1, https://ams.confex.com/ams/17Air17Sat9Coas/webprogram/Paper174036.html.

  • Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, N.-Y. Wang, P. W. Gaiser, and S. Cox, 2006: A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44, 597610, https://doi.org/10.1109/TGRS.2005.862504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birchak, J. R., L. G. Gardner, J. W. Hipp, and J. M. Victor, 1974: High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE, 62, 9398, https://doi.org/10.1109/PROC.1974.9388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P., R. W. Burpee, N. M. Dorst, and W. L. Adams, 1986: Appearance of the sea surface in tropical cyclones. Wea. Forecasting, 1, 102107, https://doi.org/10.1175/1520-0434(1986)001<0102:AOTSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brumer, S. E., C. J. Zappa, I. M. Brooks, H. Tamura, S. M. Brown, B. W. Blomquist, C. W. Fairall, and A. Cifuentes-Lorenzen, 2017: Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. J. Phys. Oceanogr., 47, 22112235, https://doi.org/10.1175/JPO-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., G. de Leeuw, L. H. Cohen, and C. D. O’Dowd, 2008: The relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett., 35, L23609, https://doi.org/10.1029/2008GL036165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaiser, P. W., Gaiser, P. W., and Coauthors, 2004: The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42, 23472361, https://doi.org/10.1109/TGRS.2004.836867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, S., 2013: Space based GNSS scatterometry: Ocean wind sensing using empirically calibrated model. IEEE Trans. Geosci. Remote Sens., 51, 48534863, https://doi.org/10.1109/TGRS.2012.2230401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, S., V. Zavorotny, S. Hrbek, I. PopStefanija, E. Walsh, D. Masters, and M. Grant, 2018: Study of surface wind and mean square slope correlation in Hurricane Ike with multiple sensors. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 11, 19751988, https://doi.org/10.1109/JSTARS.2018.2827045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., 1971: Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Electron., 9, 165169, https://doi.org/10.1109/TGE.1971.271489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2012: Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens., 50, 29782985, https://doi.org/10.1109/TGRS.2011.2177666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2018: High wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones. J. Phys. Oceanogr., 48, 22212232, https://doi.org/10.1175/JPO-D-18-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2019: Surface foam and L-band microwave radiometer measurements in high winds. IEEE Trans. Geosci. Remote Sens., 57, 27662776, https://doi.org/10.1109/TGRS.2018.2876972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, https://doi.org/10.1029/2007JC004277; Corrigendum, 114, C02015, https://doi.org/10.1029/2008JC005244.

    • Crossref
    • Export Citation
  • Hwang, P. A., and F. Fois, 2015: Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geophys. Res. Oceans, 120, 36403657, https://doi.org/10.1002/2015JC010782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Y. Fan, 2018: Low-frequency mean square slopes and dominant wave spectral properties: Toward tropical cyclone remote sensing. IEEE Trans. Geosci. Remote Sens., 56, 73597368, https://doi.org/10.1109/TGRS.2018.2850969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, 2011: An advanced roughness spectrum for computing microwave L-Band emissivity in sea surface salinity retrieval. IEEE Geosci. Remote Sens. Lett., 8, 547551, https://doi.org/10.1109/LGRS.2010.2091393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, 2013: Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J. Atmos. Oceanic Technol., 30, 21682188, https://doi.org/10.1175/JTECH-D-12-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., N. Reul, T. Meissner, and S. H. Yueh, 2019: Ocean surface foam and microwave emission: Dependence on frequency and incidence angle. IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2019.2919001, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., and M. Zhang, 1999: Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Trans. Geosci. Remote Sens., 37, 23052316, https://doi.org/10.1109/36.789627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzberg, S. J., and J. Dunion, 2009: Comparison of reflected GPS wind speed retrievals with dropsondes in tropical cyclones. Geophys. Res. Lett., 36, L17602, https://doi.org/10.1029/2009GL039512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzberg, S. J., J. Dunion, and G. G. Ganoe, 2013: The use of reflected GPS signals to retrieve ocean surface wind speeds in tropical cyclones. Radio Sci., 48, 371387, https://doi.org/10.1002/rds.20042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, L. A., and C. T. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25, 104111, https://doi.org/10.1109/TAP.1977.1141539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243, https://doi.org/10.1175/2010JTECHO744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, C., J. Piazzola, P. Forget, O. Le Calve, and S. Despiau, 2004: Analysis of the variations of the whitecap fraction as measured in a coastal zone. Bound.-Layer Meteor., 111, 339360, https://doi.org/10.1023/B:BOUN.0000016490.83880.63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafon, C., J. Piazzola, P. Forget, and S. Despiau, 2007: Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J. Mar. Syst., 66, 3846, https://doi.org/10.1016/j.jmarsys.2006.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42, 18361849, https://doi.org/10.1109/TGRS.2004.831888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2009: Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 30653083, https://doi.org/10.1109/TGRS.2009.2027012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. J. Wentz, 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens, 50, 30043026, https://doi.org/10.1109/TGRS.2011.2179662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., L. Ricciardulli, and F. Wentz, 2014: The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. Oceans, 119, 64996522, https://doi.org/10.1002/2014JC009837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., L. Ricciardulli, and F. Wentz, 2017: Capability of the SMAP mission to measure ocean surface winds in storms. Bull. Amer. Meteor. Soc., 98, 16601677, https://doi.org/10.1175/BAMS-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., 1969: Fresh water whitecaps. J. Atmos. Sci., 26, 10261029, https://doi.org/10.1175/1520-0469(1969)026<1026:FWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., 1971: Oceanic whitecaps. J. Phys. Oceanogr., 1, 139144, https://doi.org/10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandey, P., and R. Kakar, 1982: An empirical microwave emissivity model for a foam-covered sea. J. Oceanic Eng, 7, 135140, https://doi.org/10.1109/JOE.1982.1145527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, https://doi.org/10.1016/S0167-6105(98)00131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., J. Tenerelli, B. Chapron, D. Vandemark, Y. Quilfen, and Y. Kerr, 2012: SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res., 117, C02006, https://doi.org/10.1029/2011JC007474.

    • Search Google Scholar
    • Export Citation
  • Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, Y. Quilfen, S. Guimbard, and J. F. Piolle, 2016: A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclones: The five year SMOS-storm database. Remote Sens. Environ., 180, 274291, https://doi.org/10.1016/j.rse.2016.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, D. B., and V. Cardone, 1974: Observations of oceanic whitecaps and their relation to remote measurements of surface wind stress. J. Geophys. Res., 79, 444452, https://doi.org/10.1029/JC079i003p00444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salisbury, D. J., M. D. Anguelova, and I. M. Brooks, 2013: On the variability of whitecap fraction using satellite-based observations. J. Geophys. Res., 118, 62016222, https://doi.org/10.1002/2013JC008797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salisbury, D. J., M. D. Anguelova, and I. M. Brooks, 2014: Global distribution and seasonal dependence of satellite-based whitecap fraction. Geophys. Res. Lett., 41, 16161623, https://doi.org/10.1002/2014GL059246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sapp, J. W., S. O. Alsweiss, A. Jelenak, P. S. Chang, and J. Carswell, 2019: Stepped frequency microwave radiometer wind-speed retrieval improvements. Remote Sens., 11, 214, https://doi.org/10.3390/rs11030214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sihvola, A. H., 2000: Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl., 1, 393415, https://doi.org/10.1023/A:1026511515005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sihvola, A. H., and J. A. Kong, 1988: Effective permittivity of dielectric mixtures. IEEE Trans. Geosci. Remote Sens., 26, 420429, https://doi.org/10.1109/36.3045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., J. A. Verspeek, J. Vogelzang, and A. Verhoef, 2017: The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 20232134, https://doi.org/10.1109/JSTARS.2017.2681806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugihara, Y., H. Tsumori, T. Ohga, H. Yoshioka, and S. Serizawa, 2007: Variation of whitecap coverage with wave-field conditions. J. Mar. Syst., 66, 4760, https://doi.org/10.1016/j.jmarsys.2006.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toba, Y., and M. Chaen, 1973: Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Japan, 12, 111.

    • Search Google Scholar
    • Export Citation
  • Walker, R. E., 1994: Marine Light Field Statistics. John Wiley, 675 pp.

  • Weather Squadron Two, 1952: Wind estimations from aerial observations of sea conditions. NAS Jacksonville, 29 pp., http://www.aoml.noaa.gov/hrd/hurdat/seastate-aircraft.pdf.

  • Wentz, F. J., 1983: A model function for ocean microwave brightness temperatures. J. Geophys. Res., 88, 18921908, https://doi.org/10.1029/JC088iC03p01892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and D. K. Smith, 1999: A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11 49911 514, https://doi.org/10.1029/98JC02148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, D., X. Liu, and D. Yu, 2000: Probability of wave breaking and whitecap coverage in a fetch-limited sea. J. Geophys. Res., 105, 14 25314 259, https://doi.org/10.1029/2000JC900040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., R. Kwok, F. K. Li, S. V. Nghiem, W. J. Wilson, and J. A. Kong, 1994a: Polarimetric passive remote sensing of ocean wind vectors. Radio Sci., 29, 799814, https://doi.org/10.1029/94RS00450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., R. Kwok, and S. V. Nghiem, 1994b: Polarimetric scattering and emission properties of targets with reflection symmetry. Radio Sci., 29, 14091420, https://doi.org/10.1029/94RS02228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., S. J. Dinardo, A. G. Fore, and F. K. Li, 2010: Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans. Geosci. Remote Sens., 48, 30873100, https://doi.org/10.1109/TGRS.2010.2045002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., W. Tang, A. G. Fore, G. Neumann, A. Hayashi, A. Freedman, J. Chaubell, and G. S. E. Lagerloef, 2013: L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Trans. Geosci. Remote Sens., 51, 46194632, https://doi.org/10.1109/TGRS.2013.2266915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yueh, S. H., A. G. Fore, W. Tang, A. Hayashi, B. Stiles, N. Reul, Y. Weng, and F. Zhang, 2016: SMAP L-band passive microwave observations of ocean surface wind during severe storms. IEEE Trans. Geosci. Remote Sens., 54, 73397350, https://doi.org/10.1109/TGRS.2016.2600239.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 12
PDF Downloads 62 62 8

Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions

View More View Less
  • 1 Remote Sensing Division, U.S. Naval Research Laboratory, Washington, D.C.
  • 2 Laboratoire d’Océanographie Physique et Spatial, Institut Français de Recherche pour l’Exploitation de la Mer, Univ. Brest, CNRS, IRD, Brest, France
  • 3 Remote Sensing Systems, Santa Rosa, California
  • 4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s−1. Whitecap contribution is a critical component of ocean surface microwave thermal emission. In the forward solution of microwave thermal emission, the input forcing parameter is wind speed, which is used to generate the modeled surface wind stress, surface wave spectrum, and whitecap coverage necessary for the subsequent electromagnetic (EM) computation. In this respect, microwave radiometer data can be used to evaluate various formulations of the drag coefficient, whitecap coverage, and surface wave spectrum. In reverse, whitecap coverage and surface wind stress can be retrieved from microwave radiometer data by employing precalculated solutions of an analytical microwave thermal emission model that yields good agreement with field measurements. There are many published microwave radiometer datasets covering a wide range of frequency, incidence angle, and both vertical and horizontal polarizations, with maximum wind speed exceeding 90 m s−1. These datasets provide information of whitecap coverage and surface wind stress from global oceans and in extreme wind conditions. Breaking wave energy dissipation rate per unit surface area can be estimated also by making use of its linear relationship with whitecap coverage derived from earlier studies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0061.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Paul A. Hwang, paul.hwang@nrl.navy.mil

Abstract

Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s−1. Whitecap contribution is a critical component of ocean surface microwave thermal emission. In the forward solution of microwave thermal emission, the input forcing parameter is wind speed, which is used to generate the modeled surface wind stress, surface wave spectrum, and whitecap coverage necessary for the subsequent electromagnetic (EM) computation. In this respect, microwave radiometer data can be used to evaluate various formulations of the drag coefficient, whitecap coverage, and surface wave spectrum. In reverse, whitecap coverage and surface wind stress can be retrieved from microwave radiometer data by employing precalculated solutions of an analytical microwave thermal emission model that yields good agreement with field measurements. There are many published microwave radiometer datasets covering a wide range of frequency, incidence angle, and both vertical and horizontal polarizations, with maximum wind speed exceeding 90 m s−1. These datasets provide information of whitecap coverage and surface wind stress from global oceans and in extreme wind conditions. Breaking wave energy dissipation rate per unit surface area can be estimated also by making use of its linear relationship with whitecap coverage derived from earlier studies.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0061.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Paul A. Hwang, paul.hwang@nrl.navy.mil

Supplementary Materials

    • Supplemental Materials (PDF 279.11 KB)
Save