• Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, https://doi.org/10.3402/tellusa.v18i4.9712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W., 2017: When climate change predictions are right for the wrong reason. Climatic Change, 142, 16, https://doi.org/10.1007/s10584-017-1927-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., J. S. Godfrey, and S. E. Wijffels, 2010: Nonlinear effects of tropical instability waves on the equatorial Pacific circulation. J. Phys. Oceanogr., 40, 381393, https://doi.org/10.1175/2009JPO3963.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1985: Diagnostic model of the three-dimensional circulation in the upper equatorial Pacific Ocean. J. Phys. Oceanogr., 15, 12551273, https://doi.org/10.1175/1520-0485(1985)015<1255:DMOTTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014: What controls the mean east-west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. J. Climate, 27, 27572778, https://doi.org/10.1175/JCLI-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2018: A role for the Equatorial Undercurrent in the ocean dynamical thermostat. J. Climate, 31, 62456261, https://doi.org/10.1175/JCLI-D-17-0513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, M., S. Jeffrey, L. Rotstayn, K. Wong, S. Dravitzki, C. Moeseneder, C. Hamalainen, and J. Syktus, 2011: The CSIRO-Mk3-6-0 atmosphere-ocean GCM: Participation in CMIP5 and data publication. MODSIM11 Int. Congress on Modelling and Simulation, Perth, WA, Modelling and Simulation Society of Australia and New Zealand, 2691–2697, http://hdl.handle.net/102.100.100/102077?index=1.

  • Dawson, A., A. J. Matthews, D. P. Stevens, M. J. Roberts, and P. L. Vidale, 2013: Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models. Climate Dyn., 41, 14391452, https://doi.org/10.1007/s00382-012-1518-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drenkard, E. J., and K. B. Karnauskas, 2014: Strengthening of the Pacific Equatorial Undercurrent in the SODA reanalysis: Mechanisms, ocean dynamics, and implications. J. Climate, 27, 24052416, https://doi.org/10.1175/JCLI-D-13-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and et al. , 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J., and N. Gillett, 2014: Recent observed and simulated warming. Nat. Climate Change, 4, 150151, https://doi.org/10.1038/nclimate2111.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)0200150:IMIOCM2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., S. P. O’Farrell, M. A. Collier, M. R. Dix, L. D. Rotstayn, E. A. Kowalczyk, A. C. Hirst, and I. G. Watterson, 2010: The CSIRO Mk3.5 climate model. CAWCR Tech. Rep. 021, 74 pp., http://hdl.handle.net/102.100.100/108810?index=1.

  • Griffies, S. M., and et al. , 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and et al. , 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, https://doi.org/10.1175/2011JCLI3964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, https://doi.org/10.1007/s00382-005-0084-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. Cai, and A. Wittenberg, 2012: A first look at ENSO in CMIP5. CLIVAR Exchanges, No. 17, International CLIVAR Project Office, Southampton, United Kingdom, 29–32.

  • Haidvogel, D. B., and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. Imperial College Press, 318 pp.

  • Imada, Y., and M. Kimoto, 2006: Improvement of thermocline structure that affect ENSO performance in a coupled GCM. SOLA, 2, 164167, https://doi.org/10.2151/SOLA.2006-042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605, https://doi.org/10.1175/JPO2870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., G. Danabasoglu, M. Holland, Y. O. Kwon, and W. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, https://doi.org/10.1029/2007JC004515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and et al. , 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19, 13271353, https://doi.org/10.1175/JCLI3712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and et al. , 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, https://doi.org/10.1002/jame.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2007: The effect of the Galápagos Islands on the equatorial Pacific cold tongue. J. Phys. Oceanogr., 37, 12661281, https://doi.org/10.1175/JPO3048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2008: The effect of the Galápagos Islands on ENSO in forced ocean and hybrid coupled models. J. Phys. Oceanogr., 38, 25192534, https://doi.org/10.1175/2008JPO3848.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., G. C. Johnson, and R. Murtugudde, 2012: An equatorial ocean bottleneck in global climate models. J. Climate, 25, 343349, https://doi.org/10.1175/JCLI-D-11-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña–like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 42074225, https://doi.org/10.1175/JCLI-D-16-0441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E., and J. Turner, 1967: A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuntz, L. B., and D. P. Schrag, 2018: Hemispheric asymmetry in the ventilated thermocline of the tropical Pacific. J. Climate, 31, 12811288, https://doi.org/10.1175/JCLI-D-17-0686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Du, H. Xu, and B. Ren, 2015: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, https://doi.org/10.1175/JCLI-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., A. Köhl, Z. Liu, F. Wang, and D. Stammer, 2016: Deep-reaching thermocline mixing in the equatorial pacific cold tongue. Nat. Commun., 7, 11576, https://doi.org/10.1038/ncomms11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K., X. Zhang, J. A. Church, and J. Hu, 2016: Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models. Int. J. Climatol., 36, 37233740, https://doi.org/10.1002/joc.4587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and et al. , 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, https://doi.org/10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., J. G. Vialard, S. C. Kennan, J. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865, https://doi.org/10.1175/JPO2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mignot, J., D. Swingedouw, J. Deshayes, O. Marti, C. Talandier, R. Séférian, M. Lengaigne, and G. Madec, 2013: On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean state comparison. Ocean Modell., 72, 167184, https://doi.org/10.1016/j.ocemod.2013.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the Equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, https://doi.org/10.1038/ngeo657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, https://doi.org/10.1029/1999JC900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 11991218, https://doi.org/10.1029/JC093iC02p01199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phipps, S. J., L. D. Rotstayn, H. B. Gordon, J. L. Roberts, A. C. Hirst, and W. F. Budd, 2011: The CSIRO Mk3L climate system model version 1.0 – Part 1: Description and evaluation. Geosci. Model Dev., 4, 483509, https://doi.org/10.5194/gmd-4-483-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdiscip. Rev.: Climate Change, 6, 345358, https://doi.org/10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and et al. , 2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J. Climate, 22, 25412556, https://doi.org/10.1175/2008JCLI2537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., and et al. , 2012: MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model. J. Meteor. Soc. Japan, 90, 325359, https://doi.org/10.2151/jmsj.2012-301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2013: North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. J. Climate, 26, 92479290, https://doi.org/10.1175/JCLI-D-12-00593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, https://doi.org/10.1002/2014MS000363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., W. D. Smyth, and J. N. Moum, 1998: Dynamic instability of stratified shear flow in the upper equatorial Pacific. J. Geophys. Res., 103, 10 32310 337, https://doi.org/10.1029/98JC00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., and R. Bleck, 2006: Multi-century simulations with the coupled GISS-HYCOM climate model: Control experiments. Climate Dyn., 26, 407428, https://doi.org/10.1007/s00382-005-0091-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TAO Project Office, 2000: Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network. NOAA/PMEL, accessed 21 July 2016, https://www.pmel.noaa.gov/tao/drupal/disdel/.

  • Thomas, M. D., and A. V. Fedorov, 2017: The eastern subtropical Pacific origin of the equatorial cold bias in climate models: A Lagrangian perspective. J. Climate, 30, 58855900, https://doi.org/10.1175/JCLI-D-16-0819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, https://doi.org/10.1029/2000JD000298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, https://doi.org/10.1038/nclimate2341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, https://doi.org/10.5194/os-1-81-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and T. Haine, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and et al. , 2014: How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J. Climate, 27, 56735692, https://doi.org/10.1175/JCLI-D-13-00625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C., B. S. Giese, and L. Wu, 2014: Ocean dynamics and tropical Pacific climate change in ocean reanalyses and coupled climate models. J. Geophys. Res. Oceans, 119, 70667077, https://doi.org/10.1002/2014JC009979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and W. T. Liu, 2003: A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean. Geophys. Res. Lett., 30, 1735, https://doi.org/10.1029/2003GL017176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and M. J. McPhaden, 2006: Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modell., 15, 250273, https://doi.org/10.1016/j.ocemod.2005.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. C., and R. H. Zhang, 2018: An Argo-derived background diffusivity parameterization for improved ocean simulations in the tropical Pacific. Geophys. Res. Lett., 45, 15091517, https://doi.org/10.1002/2017GL076269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and et al. , 2016: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 23052328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 172 172 10
Full Text Views 98 98 14
PDF Downloads 107 107 15

Representation of the Equatorial Undercurrent in CMIP5 Models

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

The Equatorial Undercurrent (EUC) is a vital component of tropical Pacific circulation, helping to modulate the state of the equatorial Pacific Ocean. Here we compare the representation of the EUC in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with observations of the undercurrent. We find that the CMIP5 models consistently underestimate both the magnitude and variability of the EUC. Insufficient resolution as well as diffusivity parameterizations both contribute to a representation of the EUC that is too weak and too diffuse. Given the strong influence of the EUC on the evolution of tropical Pacific sea surface temperatures, model deficiencies in the EUC contribute to shortcomings in capturing ENSO dynamics and Pacific decadal variability. Further evaluation of the impact of EUC simulation on the climatology and variability in the tropical Pacific is necessary.

Corresponding author: Lauren B. Kuntz, lkuntz2013@gmail.com

Abstract

The Equatorial Undercurrent (EUC) is a vital component of tropical Pacific circulation, helping to modulate the state of the equatorial Pacific Ocean. Here we compare the representation of the EUC in models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with observations of the undercurrent. We find that the CMIP5 models consistently underestimate both the magnitude and variability of the EUC. Insufficient resolution as well as diffusivity parameterizations both contribute to a representation of the EUC that is too weak and too diffuse. Given the strong influence of the EUC on the evolution of tropical Pacific sea surface temperatures, model deficiencies in the EUC contribute to shortcomings in capturing ENSO dynamics and Pacific decadal variability. Further evaluation of the impact of EUC simulation on the climatology and variability in the tropical Pacific is necessary.

Corresponding author: Lauren B. Kuntz, lkuntz2013@gmail.com
Save