• Arhan, M., H. Mercier, and Y.-H. Park, 2003: On the deep water circulation of the eastern South Atlantic Ocean. Deep-Sea Res. I, 50, 889916, https://doi.org/10.1016/S0967-0637(03)00072-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcilon, V., and J. Pedlosky, 1967: A unified linear theory of homogeneous and stratified rotating fluids. J. Fluid Mech., 29, 609621, https://doi.org/10.1017/S0022112067001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bire, S., 2019: Eddy dynamics of eastern boundary currents. Ph.D. thesis, Stony Brook University, 132 pp.

  • Chretien, L. M. S., and K. Speer, 2019: A deep eastern boundary current in the Chile Basin. J. Geophys. Res. Oceans, 124, 2740, https://doi.org/10.1029/2018JC014400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., and A. L. Gordon, 1995: The absolute velocity field of Agulhas eddies and the Benguela Current. J. Geophys. Res., 100, 22 59122 601, https://doi.org/10.1029/95JC02421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faure, V., and K. Speer, 2012: Deep circulation in the eastern South Pacific Ocean. J. Mar. Res., 70, 748778, https://doi.org/10.1357/002224012806290714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gjermundsen, A., and J. H. Lacasce, 2017: Comparing the linear and nonlinear buoyancy-driven circulation. Tellus, 69A, 1299282, https://doi.org/10.1080/16000870.2017.1299282.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current system—Hypotheses and facts. Prog. Oceanogr., 8, 191279, https://doi.org/10.1016/0079-6611(79)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and A. M. Thurnherr, 2005: A zonal pathway for NADW in the South Atlantic. J. Oceanogr., 61, 493507, https://doi.org/10.1007/s10872-005-0058-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and B. A. De Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., R. F. Beebe, J. L. Mitchell, G. W. Garneau, G. M. Yagi, and J.-P. Müller, 1981: Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. Space Phys., 86, 87338743, https://doi.org/10.1029/JA086iA10p08733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L., C. W. Hughes, and R. G. Williams, 2006: Topographic control of basin and channel flows: The role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 17861805, https://doi.org/10.1175/JPO2936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 1998: Deep water properties, velocities, and dynamics over ocean trenches. J. Mar. Res., 56, 329347, https://doi.org/10.1357/002224098321822339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2004: Diffusivity and viscosity dependence in the linear thermocline. J. Mar. Res., 62, 743769, https://doi.org/10.1357/0022240042880864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, G., 1989: Poleward motion in the Benguela area. Poleward Flows along Eastern Ocean Boundaries, Springer, 110130.

  • Peliz, Á., J. Dubert, D. B. Haidvogel, and B. Le Cann, 2003: Generation and unstable evolution of a density-driven Eastern Poleward Current: The Iberian Poleward Current. J. Geophys. Res., 108, 3268, https://doi.org/10.1029/2002JC001443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, https://doi.org/10.1175/JPO-2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robbins, P. E., and J. M. Toole, 1997: The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep-Sea Res. I, 44, 879906, https://doi.org/10.1016/S0967-0637(96)00126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, G., S. Salinas, O. Pizarro, A. Vega, and S. Hormazabal, 1995: Currents in the deep ocean off Chile (30°S). Deep-Sea Res. I, 42, 425436, https://doi.org/10.1016/0967-0637(95)99823-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaffer, G., S. Hormazabal, O. Pizarro, and M. Ramos, 2004: Circulation and variability in the Chile basin. Deep-Sea Res. I, 51, 13671386, https://doi.org/10.1016/j.dsr.2004.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2006: Antarctic bottom and lower circumpolar deep water circulation in the eastern Indian Ocean. J. Geophys. Res., 111, C02006, https://doi.org/10.1029/2005JC003011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, https://doi.org/10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., G. Siedler, and L. Talley, 1995: The Namib Col Current. Deep-Sea Res. I, 42, 19331950, https://doi.org/10.1016/0967-0637(95)00088-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the world ocean. II. an idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217233, https://doi.org/10.1016/0146-6313(59)90075-9.

    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., and et al. , 2017: Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun., 8, 172, https://doi.org/10.1038/s41467-017-00197-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., L. Talley, and M. Mazloff, 2019: A deep eastern boundary current carrying Indian Deep Water south of Australia. J. Geophys. Res. Oceans, 124, 22182238, https://doi.org/10.1029/2018JC014569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and K. J. Richards, 2011: Low frequency variability of Southern Ocean jets. J. Geophys. Res., 116, C09022, https://doi.org/10.1029/2010JC006749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O., 1984: Observations of the Leeuwin current off Western Australia. J. Phys. Oceanogr., 14, 623628, https://doi.org/10.1175/1520-0485(1984)014<0623:OOTLCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and B. A. Warren, 1993: A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res. I, 40, 19732019, https://doi.org/10.1016/0967-0637(93)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsimplis, M., S. Bacon, and H. Bryden, 1998: The circulation of the subtropical South Pacific derived from hydrographic data. J. Geophys. Res., 103, 21 44321 468, https://doi.org/10.1029/98JC01881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics, Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 946 pp.

  • Verdy, A., and M. Mazloff, 2017: A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans, 122, 69686988, https://doi.org/10.1002/2016JC012650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1973: Transpacific hydrographic sections at lats. 43°S and 28°S: The SCORPIO expedition—II. Deep water. Deep-Sea Res. Oceanogr. Abstr., 20, 938, https://doi.org/10.1016/0011-7471(73)90040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, B. A., and K. G. Speer, 1991: Deep circulation in the eastern South Atlantic Ocean. Deep-Sea Res., 38A, 281322, https://doi.org/10.1016/S0198-0149(12)80014-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Well, R., W. Roether, and D. P. Stevens, 2003: An additional deep-water mass in Drake passage as revealed by 3He data. Deep-Sea Res. I, 50, 10791098, https://doi.org/10.1016/S0967-0637(03)00050-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., J. M. Toole, and R. Davis, 2001: Revisiting the South Pacific subtropical circulation: A synthesis of world Ocean Circulation experiment observations along 32°S. J. Geophys. Res., 106, 19 48119 513, https://doi.org/10.1029/1999JC000118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C., and S. Bire, 2019: Eastern boundary currents an overturning in buoyancy-driven basins. 22nd Conf. on Atmospheric and Oceanic Fluid Dynamics, Portland, ME, Amer. Meteor. Soc., 8.5, https://ams.confex.com/ams/22FLUID/meetingapp.cgi/Paper/360227.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A comprehensive ocean-atmosphere data set. Bull. Amer. Meteor. Soc., 68, 12391250, https://doi.org/10.1175/1520-0477(1987)068<1239:ACOADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., D. Hu, and B. Grant, 1983: Mass, heat, salt and nutrient fluxes in the South Pacific Ocean. J. Phys. Oceanogr., 13, 725753, https://doi.org/10.1175/1520-0485(1983)013<0725:MHSANF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., E. Tziperman, and K. Speer, 2020: Dynamics of deep ocean eastern boundary currents. Geophys. Res. Lett., 47, e2019GL085396, https://doi.org/10.1029/2019GL085396.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 134 11
Full Text Views 49 49 6
PDF Downloads 68 68 8

Deep Eastern Boundary Currents: Realistic Simulations and Vorticity Budgets

View More View Less
  • 1 Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
  • | 2 School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
  • | 3 Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida
  • | 4 Department of Earth, Ocean, and Atmosphere Sciences, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

Concentrated poleward flows near the eastern boundaries between 2- and 4-km depth have been observed repeatedly, particularly in the Southern Hemisphere. These deep eastern boundary currents (DEBCs) play an important role in setting the large-scale tracer distribution and have nonnegligible contribution to global transports of mass, heat, and tracers, but their dynamics are not well understood. In this paper, we first demonstrate the significant role of DEBCs in the southeastern Atlantic, Indian, and Pacific Oceans, using the Southern Ocean State Estimate (SOSE) data assimilating product, and using high-resolution regional general circulation model configurations. The vorticity balances of these DEBCs reveal that, over most of the width of such currents, they are in an interior-like vorticity budget, with the meridional advection of planetary vorticity βυ and vortex stretching fwz being the largest two terms, and with contributions of nonlinearity and friction that are of smaller spatial scale. The stretching is shown, using a temperature budget, to be largely forced by resolved or parameterized eddy temperature transport. Strongly decaying signals from the eastern boundary in friction and stretching form the dominant balance in a sublayer close to the eastern boundary. The temporal variability of DEBCs is then examined, to help to interpret observations that tend to be sporadic in both time and space. The probability distribution functions of northward velocity in DEBC regions are broad, implying that flow reversals are common. Although the regions of the simulated DEBCs are generally local minima of eddy kinetic energy, they are still constantly releasing westward-propagating Rossby waves.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0002.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoting Yang, xiaoting_yang@g.harvard.edu

Abstract

Concentrated poleward flows near the eastern boundaries between 2- and 4-km depth have been observed repeatedly, particularly in the Southern Hemisphere. These deep eastern boundary currents (DEBCs) play an important role in setting the large-scale tracer distribution and have nonnegligible contribution to global transports of mass, heat, and tracers, but their dynamics are not well understood. In this paper, we first demonstrate the significant role of DEBCs in the southeastern Atlantic, Indian, and Pacific Oceans, using the Southern Ocean State Estimate (SOSE) data assimilating product, and using high-resolution regional general circulation model configurations. The vorticity balances of these DEBCs reveal that, over most of the width of such currents, they are in an interior-like vorticity budget, with the meridional advection of planetary vorticity βυ and vortex stretching fwz being the largest two terms, and with contributions of nonlinearity and friction that are of smaller spatial scale. The stretching is shown, using a temperature budget, to be largely forced by resolved or parameterized eddy temperature transport. Strongly decaying signals from the eastern boundary in friction and stretching form the dominant balance in a sublayer close to the eastern boundary. The temporal variability of DEBCs is then examined, to help to interpret observations that tend to be sporadic in both time and space. The probability distribution functions of northward velocity in DEBC regions are broad, implying that flow reversals are common. Although the regions of the simulated DEBCs are generally local minima of eddy kinetic energy, they are still constantly releasing westward-propagating Rossby waves.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0002.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoting Yang, xiaoting_yang@g.harvard.edu

Supplementary Materials

    • Supplemental Materials (PDF 24.29 MB)
Save