• Almansi, M., T. W. Haine, R. S. Pickart, M. G. Magaldi, R. Gelderloos, and D. Mastropole, 2017: High-frequency variability in the circulation and hydrography of the Denmark Strait overflow from a high-resolution numerical model. J. Phys. Oceanogr., 47, 29993013, https://doi.org/10.1175/JPO-D-17-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almansi, M., T. Haine, R. Gelderloos, and R. Pickart, 2020: Evolution of Denmark Strait overflow cyclones and their relationship to overflow surges. Geophys. Res. Lett., 47, e2019GL086759, https://doi.org/10.1029/2019GL086759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., 1986: The hydraulics of two flowing layers with different densities. J. Fluid Mech., 163, 2758, https://doi.org/10.1017/S0022112086002197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., R. S. Pickart, H. Valdimarsson, S. Jonsson, R. W. Schmitt, and T. W. Haine, 2012: The East Greenland boundary current system south of Denmark Strait. Deep-Sea Res. I, 63, 119, https://doi.org/10.1016/j.dsr.2012.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruce, J., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res. I, 42, 1329, https://doi.org/10.1016/0967-0637(94)00040-Y.

  • Casanova-Masjoan, M., and et al. , 2020: Along-stream, seasonal and interannual variability of the North Icelandic Irminger Current and East Icelandic Current around Iceland. J. Geophys. Res. Ocean, 125, e2020JC016283, https://doi.org/10.1029/2020JC016283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Steur, L., E. Hansen, R. Gerdes, M. Karcher, E. Fahrbach, and J. Holfort, 2009: Freshwater fluxes in the East Greenland Current: A decade of observations. Geophys. Res. Lett., 36, L23611, https://doi.org/10.1029/2009GL041278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic deep water: Sources, rates, and pathways. J. Geophys. Res., 99, 12 31912 341, https://doi.org/10.1029/94JC00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, https://doi.org/10.1002/asl.153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girton, J. B., and T. B. Sanford, 2003: Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanogr., 33, 13511364, https://doi.org/10.1175/1520-0485(2003)033<1351:DAMOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., and et al. , 2016: Upstream sources of the Denmark Strait overflow: Observations from a high-resolution mooring array. Deep-Sea Res. I, 112, 94112, https://doi.org/10.1016/j.dsr.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Håvik, L., R. S. Pickart, K. Våge, D. Torres, A. M. Thurnherr, A. Beszczynska-Möller, W. Walczowski, and W. J. von Appen, 2017a: Evolution of the east Greenland current from Fram Strait to Denmark strait: Synoptic measurements from summer 2012. J. Geophys. Res. Oceans, 122, 19741994, https://doi.org/10.1002/2016JC012228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Håvik, L., K. Våge, R. Pickart, B. Harden, W.-J. Appen, S. Jónsson, and S. Østerhus, 2017b: Structure and variability of the shelfbreak East Greenland current north of Denmark Strait. J. Phys. Oceanogr., 47, 26312646, https://doi.org/10.1175/JPO-D-17-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holte, J., and F. Straneo, 2017: Seasonal overturning of the Labrador Sea as observed by Argo floats. J. Phys. Oceanogr., 47, 25312543, https://doi.org/10.1175/JPO-D-17-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Høyer, J. L., and D. Quadfasel, 2001: Detection of deep overflows with satellite altimetry. Geophys. Res. Lett., 28, 16111614, https://doi.org/10.1029/2000GL012549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., R. S. Pickart, H. Valdimarsson, P. Lin, M. A. Spall, and F. Xu, 2019: Structure and variability of the North Icelandic Jet from two years of mooring data. J. Geophys. Res. Oceans, 124, 39874002, https://doi.org/10.1029/2019JC015134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., R. S. Pickart, R. X. Huang, P. Lin, A. Brakstad, and F. Xu, 2020: Sources and upstream pathways of the densest overflow in the Nordic Seas. Nat. Commun., https://doi.org/10.1038/s41467-020-19050-y, in press.

    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson, 2012: Variability of the Denmark Strait overflow: Moored time series from 1996–2011. J. Geophys. Res., 117, C12003, https://doi.org/10.1029/2012JC008244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., M. Moritz, N. Nunes, D. Quadfasel, K. M. Larsen, B. Hansen, H. Valdimarsson, and S. Jonsson, 2017: Revised transport estimates of the Denmark Strait overflow. J. Geophys. Res. Oceans, 122, 34343450, https://doi.org/10.1002/2017JC012803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Käse, R. H., J. Girton, and T. Sanford, 2003: Structure and variability of the Denmark Strait overflow: Model and observations. J. Geophys. Res., 108, 3181, https://doi.org/10.1029/2002JC001548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kösters, F., 2004: Denmark Strait overflow: Comparing model results and hydraulic transport estimates. J. Geophys. Res., 109, C10011, https://doi.org/10.1029/2004JC002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., R. S. Pickart, D. J. Torres, and A. Pacini, 2018: Evolution of the freshwater coastal current at the southern tip of Greenland. J. Phys. Oceanogr., 48, 21272140, https://doi.org/10.1175/JPO-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logemann, K., J. Ólafsson, Á. Snorrason, H. Valdimarsson, and G. Marteinsdóttir, 2013: The circulation of Icelandic waters-A modelling study. Ocean Sci., 9, 931955, https://doi.org/10.5194/os-9-931-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M., and et al. , 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macrander, A., 2004: Variability and processes of the Denmark Strait overflow. Ph.D. dissertation, Christian-Albrechts-Universität, 183 pp.

  • Mastropole, D., R. S. Pickart, H. Valdimarsson, K. Våge, K. Jochumsen, and J. Girton, 2017: On the hydrography of Denmark Strait. J. Geophys. Res. Oceans, 122, 306321, https://doi.org/10.1002/2016JC012007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, https://doi.org/10.1016/0967-0637(96)00037-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, M., K. Jochumsen, R. P. North, D. Quadfasel, and H. Valdimarsson, 2019: Mesoscale eddies observed at the Denmark Strait sill. J. Geophys. Res. Oceans, 124, 79477961, https://doi.org/10.1029/2019JC015273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, A., K. Borenäs, R. Hietala, and P. Lundberg, 2003: Hydraulic estimates of Denmark Strait overflow. J. Geophys. Res., 108, 3095, https://doi.org/10.1029/2001JC001283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, A., R. S. Pickart, P. S. Fratantoni, K. Shimada, D. J. Torres, and E. P. Jones, 2009: The western Arctic boundary current at 152°W: Structure, variability, and transport. Deep-Sea Res. II, 56, 11641181, https://doi.org/10.1016/j.dsr2.2008.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, R. P., K. Jochumsen, and M. Moritz, 2018: Entrainment and energy transfer variability along the descending path of the Denmark Strait overflow plume. J. Geophys. Res. Oceans, 123, 27952807, https://doi.org/10.1002/2018JC013821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Østerhus, S., T. Sherwin, D. Quadfasel, and B. Hansen, 2008: The overflow transport east of Iceland. Arctic–Subarctic Ocean Fluxes, Springer, 427441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the north Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, https://doi.org/10.1175/JPO3178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and P. S. Fratantoni, 2005: The east Greenland spill jet. J. Phys. Oceanogr., 35, 10371053, https://doi.org/10.1175/JPO2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., G. Moore, C. Mao, F. Bahr, C. Nobre, and T. J. Weingartner, 2016: Circulation of winter water on the Chukchi shelf in early summer. Deep-Sea Res. II, 130, 5675, https://doi.org/10.1016/j.dsr2.2016.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and et al. , 2017: The North Icelandic jet and its relationship to the north Icelandic Irminger Current. J. Mar. Res., 75, 605639, https://doi.org/10.1357/002224017822109505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 1986: Hydraulic control of sill flow with bottom friction. J. Phys. Oceanogr., 16, 19701980, https://doi.org/10.1175/1520-0485(1986)016<1970:HCOSFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 2008: Critical conditions and composite Froude numbers for layered flow with transverse variations in velocity. J. Fluid Mech., 605, 281291, https://doi.org/10.1017/S002211200800150X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and K. Helfrich, 2005: Generalized conditions for hydraulic criticality of oceanic overflows. J. Phys. Oceanogr., 35, 17821800, https://doi.org/10.1175/JPO2788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. O. N. Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200, https://doi.org/10.1016/0079-6611(94)90027-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., P. Eriksson, H. Grönvall, R. Hietala, and J. Launiainen, 1999: Hydrographic observations in Denmark Strait in fall 1997, and their implications for the entrainment into the overflow plume. Geophys. Res. Lett., 26, 13251328, https://doi.org/10.1029/1999GL900212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., G. Björk, J. Nilsson, P. Winsor, I. Lake, and C. Nohr, 2005: The interaction between waters from the Arctic Ocean and the Nordic seas north of Fram Strait and along the East Greenland Current: Results from the Arctic Ocean-02 Oden expedition. J. Mar. Syst., 55, 130, https://doi.org/10.1016/j.jmarsys.2004.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semper, S., K. Våge, R. S. Pickart, H. Valdimarsson, D. J. Torres, and S. Jónsson, 2019: The emergence of the North Icelandic Jet and its evolution from northeast Iceland to Denmark Strait. J. Phys. Oceanogr., 49, 24992521, https://doi.org/10.1175/JPO-D-19-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1976: Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceanogr., 6, 355371, https://doi.org/10.1175/1520-0485(1976)006<0355:BIITDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. F. Price, 1998: Mesoscale variability in Denmark Strait: The PV outflow hypothesis. J. Phys. Oceanogr., 28, 15981623, https://doi.org/10.1175/1520-0485(1998)028<1598:MVIDST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. Pedlosky, 2008: Lateral coupling in baroclinically unstable flows. J. Phys. Oceanogr., 38, 12671277, https://doi.org/10.1175/2007JPO3906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., J. Pedlosky, and C. Cenedese, 2017: Circulation induced by isolated dense water formation over closed topographic contours. J. Phys. Oceanogr., 47, 22512265, https://doi.org/10.1175/JPO-D-17-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. Lin, W.-J. Appen, D. Mastropole, H. Valdimarsson, T. W. Haine, and M. Almansi, 2019: Frontogenesis and variability in Denmark Strait and its influence on overflow water. J. Phys. Oceanogr., 49, 18891904, https://doi.org/10.1175/JPO-D-19-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, H. Valdimarsson, S. Jónsson, D. J. Torres, S. Østerhus, and T. Eldevik, 2011: Significant role of the North Icelandic Jet in the formation of Denmark Strait overflow water. Nat. Geosci., 4, 723727, https://doi.org/10.1038/ngeo1234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, G. Moore, H. Valdimarsson, D. J. Torres, S. Y. Erofeeva, and J. E. Ø. Nilsen, 2013: Revised circulation scheme north of the Denmark Strait. Deep-Sea Res. I, 79, 2039, https://doi.org/10.1016/j.dsr.2013.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., G. W. K. Moore, S. Jónsson, and H. Valdimarsson, 2015: Water mass transformation in the Iceland Sea. Deep-Sea Res. I, 101, 98109, https://doi.org/10.1016/j.dsr.2015.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., D. Mastropole, R. S. Pickart, H. Valdimarsson, S. Jónsson, and J. B. Girton, 2017: On the nature of the mesoscale variability in Denmark Strait. J. Phys. Oceanogr., 47, 567582, https://doi.org/10.1175/JPO-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 153 153 22
Full Text Views 66 66 16
PDF Downloads 83 83 17

Kinematic Structure and Dynamics of the Denmark Strait Overflow from Ship-Based Observations

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Federal Maritime and Hydrographic Agency (BSH), Hamburg, Germany
  • | 3 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 4 Marine and Freshwater Research Institute, Reykjavik, Iceland
  • | 5 Department of Marine Technology, Multiconsult Norway AS, Tromsø, Norway
© Get Permissions
Restricted access

Abstract

The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peigen Lin, plinwhoi@gmail.com

Abstract

The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peigen Lin, plinwhoi@gmail.com
Save