• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003a: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159163, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003b: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 14241427, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, https://doi.org/10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2020: Global calculations of local and remote near-inertial-wave dissipation. J. Phys. Oceanogr., 50, 31573164, https://doi.org/10.1175/JPO-D-20-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station Papa in the Northeast Pacific. J. Phys. Oceanogr., 42, 889909, https://doi.org/10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., A. Y. Shcherbina, and M. C. Gregg, 2013: Observations of near-inertial internal gravity waves radiating from a frontal jet. J. Phys. Oceanogr., 43, 12251239, https://doi.org/10.1175/JPO-D-12-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., B. M. Sloyan, and H. L. Simmons, 2017: Internal waves in the East Australian current. Geophys. Res. Lett., 44, 12 28012 288, https://doi.org/10.1002/2017GL075246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. Moum, 1994: Prescriptions for heat flux and entrainment rates in the upper ocean during convection. J. Phys. Oceanogr., 24, 21422155, https://doi.org/10.1175/1520-0485(1994)024<2142:PFHFAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ball, F., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483494, https://doi.org/10.1002/qj.49708637005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and et al. , 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493, https://doi.org/10.1175/2011JCLI4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O’Brien, T. P. Boyer, C. Stephens, and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses,Data Statistics, and Figures. CD-ROM Documentation, NODC Internal Rep. 17,17 pp., ftp://ftp.nodc.noaa.gov/pub/data.nodc/woa/PUBLICATIONS/readme.pdf.

  • Crawford, G., and W. Large, 1996: A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891, https://doi.org/10.1175/1520-0485(1996)026<0873:ANIORI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R., R. A. De Szoeke, D. Halpern, and P. Niiler, 1981: Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28A, 14271451, https://doi.org/10.1016/0198-0149(81)90091-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohan, K., and R. E. Davis, 2011: Mixing in the transition layer during two storm events. J. Phys. Oceanogr., 41, 4266, https://doi.org/10.1175/2010JPO4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, D., and D. Roemmich, 2014: Climatological monthly heat and freshwater flux estimates on a global scale from Argo. J. Geophys. Res. Oceans, 119, 68846899, https://doi.org/10.1002/2014JC010083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wake of a storm. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L., and S. E. Belcher, 2011: Wind-driven mixing below the oceanic mixed layer. J. Phys. Oceanogr., 41, 15561575, https://doi.org/10.1175/JPO-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

  • Holte, J., L. D. Talley, J. Gilson, and D. Roemmich, 2017: An Argo mixed layer climatology and database. Geophys. Res. Lett., 44, 56185626, https://doi.org/10.1002/2017GL073426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosegood, P. J., M. C. Gregg, and M. H. Alford, 2008: Restratification of the surface mixed layer with submesoscale lateral density gradients: Diagnosing the importance of the horizontal dimension. J. Phys. Oceanogr., 38, 24382460, https://doi.org/10.1175/2008JPO3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, https://doi.org/10.1029/2005GL023289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: On the impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, https://doi.org/10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and D. L. Rudnick, 2009: Observations of the transition layer. J. Phys. Oceanogr., 39, 780797, https://doi.org/10.1175/2008JPO3824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Dickinson, M. J. McPhaden, and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 24692472, https://doi.org/10.1029/2000GL012610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, https://doi.org/10.1175/2010JPO4403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. Watson, and C. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., and P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, https://doi.org/10.1029/97JC03200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and et al. , 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Jing, and L. Wu, 2019: Wind power on oceanic near-inertial oscillations in the global ocean estimated from surface drifters. Geophys. Res. Lett., 46, 26472653, https://doi.org/10.1029/2018GL081712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28, 401421, https://doi.org/10.1175/1520-0485(1998)028<0401:TSHBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., J. R. Koseff, and B. L. White, 2018: Mixing efficiency in the presence of stratification: When is it constant? Geophys. Res. Lett., 45, 56275634, https://doi.org/10.1029/2018GL077229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, https://doi.org/10.1029/96JC00508.

  • Nagai, T., A. Tandon, E. Kunze, and A. Mahadevan, 2015: Spontaneous generation of near-inertial waves from the Kuroshio front. J. Phys. Oceanogr., 45, 23812406, https://doi.org/10.1175/JPO-D-14-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1975: Deepening of the wind-mixed layer. J. Mar. Res., 33, 405421.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plueddemann, A., and J. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, https://doi.org/10.1016/j.dsr2.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 813816, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy–internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rath, W., R. Greatbatch, and X. Zhai, 2013: Reduction of near-inertial energy through the dependence of wind stress on the ocean-surface velocity. J. Geophys. Res. Oceans, 118, 27612773, https://doi.org/10.1002/jgrc.20198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, C. Eden, and H. Haak, 2013: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, https://doi.org/10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049, https://doi.org/10.1175/2008JPO3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. Smyth, and G. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 18661890, https://doi.org/10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res. Oceans, 103, 12 64912 668, https://doi.org/10.1029/97JC03611.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Turner, J., and E. Kraus, 1967: A one-dimensional model of the seasonal thermocline I. A laboratory experiment and its interpretation. Tellus, 19, 8897, https://doi.org/10.3402/tellusa.v19i1.9752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushijima, Y., and Y. Yoshikawa, 2020: Mixed layer deepening due to wind-induced shear-driven turbulence and scaling of the deepening rate in the stratified ocean. Ocean Dyn., 70, 505512, https://doi.org/10.1007/S10236-020-01344-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Ann. Rev. Fluid Mech., 45, 147172, https://doi.org/10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, https://doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., 2017: Dependence of energy flux from the wind to surface inertial currents on the scale of atmospheric motions. J. Phys. Oceanogr., 47, 27112719, https://doi.org/10.1175/JPO-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel. Geophys. Res. Lett., 32, L18602, https://doi.org/10.1029/2005GL023643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, C. Eden, and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, https://doi.org/10.1175/2009JPO4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141145, https://doi.org/10.1007/BF02033914.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 447 447 41
Full Text Views 133 133 13
PDF Downloads 188 188 15

Revisiting Near-Inertial Wind Work: Slab Models, Relative Stress, and Mixed Layer Deepening

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The wind generation of near-inertial waves is revisited through use of the Pollard–Rhines–Thompson theory, the Price–Weller–Pinkel (PWP) mixed layer model, and KPP simulations of resonant forcing by Crawford and Large. An Argo mixed layer climatology and 0.6° MERRA-2 reanalysis winds are used to compute global totals and explore hypotheses. First, slab models overestimate wind work by factors of 2–4 when the mixed layer is shallow relative to the scaling H* ≡ u*/(Nf)1/2, but are accurate for deeper mixed layers, giving overestimation of global totals by a factor of 1.23 ± 0.03 compared to PWP. Using wind stress relative to the ocean currents further reduces the wind work by an additional 13 ± 0.3%, for a global total wind work of 0.26 TW. Second, the potential energy increase ΔPE due to wind-driven mixed layer deepening is examined and compared to ΔPE computed from Argo and ERA-Interim heat flux climatology. Argo-derived ΔPE closely matches cooling, confirming that cooling sets the seasonal cycle of mixed layer depth and providing a new constraint on observational estimates of convective buoyancy flux at the mixed layer base. Locally and in fall, wind-driven deepening is comparable in importance to cooling. Globally, wind-driven ΔPE is about 11% of wind work, implying that >50% of wind work goes to turbulence and thus not into propagating inertial motions. The fraction into this “modified wind work” is imperfectly estimated in two ways, but we conclude that more research is needed into mixed layer and transition-layer physics. The power available for propagating near-inertial waves is therefore still uncertain, but appears lower than previously thought.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew H. Alford, malford@ucsd.edu

Abstract

The wind generation of near-inertial waves is revisited through use of the Pollard–Rhines–Thompson theory, the Price–Weller–Pinkel (PWP) mixed layer model, and KPP simulations of resonant forcing by Crawford and Large. An Argo mixed layer climatology and 0.6° MERRA-2 reanalysis winds are used to compute global totals and explore hypotheses. First, slab models overestimate wind work by factors of 2–4 when the mixed layer is shallow relative to the scaling H* ≡ u*/(Nf)1/2, but are accurate for deeper mixed layers, giving overestimation of global totals by a factor of 1.23 ± 0.03 compared to PWP. Using wind stress relative to the ocean currents further reduces the wind work by an additional 13 ± 0.3%, for a global total wind work of 0.26 TW. Second, the potential energy increase ΔPE due to wind-driven mixed layer deepening is examined and compared to ΔPE computed from Argo and ERA-Interim heat flux climatology. Argo-derived ΔPE closely matches cooling, confirming that cooling sets the seasonal cycle of mixed layer depth and providing a new constraint on observational estimates of convective buoyancy flux at the mixed layer base. Locally and in fall, wind-driven deepening is comparable in importance to cooling. Globally, wind-driven ΔPE is about 11% of wind work, implying that >50% of wind work goes to turbulence and thus not into propagating inertial motions. The fraction into this “modified wind work” is imperfectly estimated in two ways, but we conclude that more research is needed into mixed layer and transition-layer physics. The power available for propagating near-inertial waves is therefore still uncertain, but appears lower than previously thought.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew H. Alford, malford@ucsd.edu
Save