• Alford, M. H., 2008: Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett., 35, L15602, https://doi.org/10.1029/2008GL034720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. Mackinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, https://doi.org/10.1029/2007GL031566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, https://doi.org/10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., H. L. Simmons, O. B. Marques, and J. B. Girton, 2019: Internal tide attenuation in the North Pacific. Geophys. Res. Lett., 46, 82058213, https://doi.org/10.1029/2019GL082648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft, 2015: Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res. Oceans, 120, 60576071, https://doi.org/10.1002/2015JC010998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., and Coauthors, 2017: Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations. J. Geophys. Res. Oceans, 122, 18821900, https://doi.org/10.1002/2016JC012184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., and Coauthors, 2018: Geographical distribution of diurnal and semidiurnal parametric subharmonic instability in a global ocean circulation model. J. Phys. Oceanogr., 48, 14091431, https://doi.org/10.1175/JPO-D-17-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2013: Three-dimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44, 850869, https://doi.org/10.1175/JPO-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147, https://doi.org/10.1175/JPO2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. A. Merrifield, 2007: Open boundary conditions for regional tidal simulations. Ocean Modell., 18, 194209, https://doi.org/10.1016/j.ocemod.2007.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, https://doi.org/10.1175/2008JPO3860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chinn, B. S., J. B. Girton, and M. H. Alford, 2012: Observations of internal waves and parametric subharmonic instability in the Philippines archipelago. J. Geophys. Res., 117, C05019, https://doi.org/10.1029/2011JC007392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., Y. Kwok, K. Yu, and Y. Zhu, 1999: Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res., 19, 845869, https://doi.org/10.1016/S0278-4343(99)00002-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia H. E., and Coauthors, 2019: World Ocean Atlas 2018: Product documentation. NOAA/NESDIS, 20 pp., https://odv.awi.de/fileadmin/user_upload/odv/data/WOA18/woa18documentation.pdf.

  • Gerkema, T., C. Staquet, and P. Bouruet-Aubertot, 2006: Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett., 33, L08604, https://doi.org/10.1029/2005GL025105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazewinkel, J., and K. Winters, 2011: PSI of the internal tide on a beta-plane: Flux divergence and near-inertial wave propagation. J. Phys. Oceanogr., 41, 16731682, https://doi.org/10.1175/2011JPO4605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathershaw, A. D., A. L. New, and P. D. Edwards, 1987: Internal tides and sediment transport at the shelf break in the Celtic Sea. Cont. Shelf Res., 7, 485517, https://doi.org/10.1016/0278-4343(87)90092-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, https://doi.org/10.1029/2003GL017998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., C.-S. Chern, J. Wang, and S.-Y. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, https://doi.org/10.1029/2006JC004003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, https://doi.org/10.1007/s10872-008-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, https://doi.org/10.1016/j.ocemod.2010.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey submarine canyon. J. Phys. Oceanogr., 32, 18901913, https://doi.org/10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y., L.-A. Couston, Q. Guo, and M.-R. Alam, 2017: Dominant resonance in parametric subharmonic instability of internal waves. arXiv, https://arxiv.org/abs/1709.06250v2.

  • Liao, G., Y. Yuan, C. Yang, H. Chen, H. Wang and W. Huang, 2012: Current observations of internal tides and parametric subharmonic instability in Luzon Strait. Atmos. Ocean, 50, 5976, https://doi.org/10.1080/07055900.2012.742007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K., J. Sun, C. Guo, Y. Yang, W. Yu, and Z. Wei, 2019: Seasonal and spatial variations of the M2 internal tide in the Yellow Sea. J. Geophys. Res. Oceans, 124, 11151138, https://doi.org/10.1029/2018JC014819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, https://doi.org/10.1029/2005GL023376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, R. Pinkel, J. Klymak, and Z. Zhao, 2013a: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, https://doi.org/10.1175/JPO-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013b: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, https://doi.org/10.1175/JPO-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13971412, https://doi.org/10.1029/JC082i009p01397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C., H. Chen, and X. , 2011: An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin. J. Oceanology Limnol., 29, 13391356, https://doi.org/10.1007/s00343-011-1023-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. Kunze, R. B. Scott, A. J. Wallcraft, and L. Zamudio, 2015: Toward an internal gravity wave spectrum in global ocean models. Geophys. Res. Lett., 42, 34743481, https://doi.org/10.1002/2015GL063365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., R. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, R., J. Dong, and P. Hartlipp, 2017: Diurnal Critical latitude and the latitude dependence of internal tides, internal waves, and mixing based on Barcoo seamount. J. Geophys. Res. Oceans, 122, 78387866, https://doi.org/10.1002/2016JC012591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017: Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans, 122, 78037821, https://doi.org/10.1002/2017JC013009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138, https://doi.org/10.1016/j.ocemod.2008.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., Q. Zheng, D. Wang, J. Hu, C. K. Tai, and Z. Sun, 2011: A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data. J. Oceanogr., 67, 677687, https://doi.org/10.1007/s10872-011-0081-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, O. M., and R. Pinkel, 2013: Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii. J. Phys. Oceanogr., 43, 766789, https://doi.org/10.1175/JPO-D-12-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, https://doi.org/10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2005: Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys. Res. Lett., 32, L23611, https://doi.org/10.1029/2005GL024160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., S. Peng, Z. Liu, R. Huang, Y.-K. Qian, and Y. Li, 2016: Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J. Phys. Oceanogr., 46, 107124, https://doi.org/10.1175/JPO-D-15-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C., 2011: Chlorophyll anomalies along the critical latitude at 30°N in the NE Pacific. Geophys. Res. Lett., 38, L15603, https://doi.org/10.1029/2011GL048210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., X. Shang, G. Chen, and L. Sun, 2009: Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys. Res. Lett., 36, L02606, https://doi.org/10.1029/2008GL036383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., Q. Liu, X. Shang, G. Chen, and D. Wang, 2016: Poleward propagation of parametric subharmonic instability-induced inertial waves. J. Geophys. Res. Oceans, 121, 18811895, https://doi.org/10.1002/2015JC011194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, and J. Tian, 2016: Three-dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr., 46, 769788, https://doi.org/10.1175/JPO-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., T. Hibiya, Y. Tanaka, L. Zhao, and H. Wei, 2018: Modification of parametric subharmonic instability in the presence of background geostrophic currents. Geophys. Res. Lett., 45, 12 95712 962, https://doi.org/10.1029/2018GL080183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, https://doi.org/10.1002/2014JC010014.

  • Zhao, Z., M. H. Alford, J. A. Mackinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 323 64 0
Full Text Views 224 98 20
PDF Downloads 238 85 10

Disintegration of the K1 Internal Tide in the South China Sea due to Parametric Subharmonic Instability

View More View Less
  • 1 Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 2 Applied Physics Laboratory, University of Washington, Seattle, Washington
Restricted access

Abstract

The disintegration of the equatorward-propagating K1 internal tide in the South China Sea (SCS) by parametric subharmonic instability (PSI) at its critical latitude of 14.52°N is investigated numerically. The multiple-source generation and long-range propagation of K1 internal tides are successfully reproduced. Using equilibrium analysis, the internal wave field near the critical latitude is found to experience two quasi-steady states, between which the subharmonic waves develop constantly. The simulated subharmonic waves agree well with classic PSI theoretical prediction. The PSI-induced near-inertial waves are of half the K1 frequency and dominantly high modes, the vertical scales ranging from 50 to 180 m in the upper ocean. From an energy perspective, PSI mainly occurs in the critical latitudinal zone from 13° to 15°N. In this zone, the incident internal tide loses ~14% energy in the mature state of PSI. PSI triggers a mixing elevation of O(10−5–10−4) m2 s−1 in the upper ocean at the critical latitude, which is several times larger than the background value. The contribution of PSI to the internal tide energy loss and associated enhanced mixing may differ regionally and is closely dependent on the intensity and duration of background internal tide. The results elucidate the far-field dissipation mechanism by PSI in connecting interior mixing with remotely generated K1 internal tides in the Luzon Strait.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun Liu, comealong@126.com

Abstract

The disintegration of the equatorward-propagating K1 internal tide in the South China Sea (SCS) by parametric subharmonic instability (PSI) at its critical latitude of 14.52°N is investigated numerically. The multiple-source generation and long-range propagation of K1 internal tides are successfully reproduced. Using equilibrium analysis, the internal wave field near the critical latitude is found to experience two quasi-steady states, between which the subharmonic waves develop constantly. The simulated subharmonic waves agree well with classic PSI theoretical prediction. The PSI-induced near-inertial waves are of half the K1 frequency and dominantly high modes, the vertical scales ranging from 50 to 180 m in the upper ocean. From an energy perspective, PSI mainly occurs in the critical latitudinal zone from 13° to 15°N. In this zone, the incident internal tide loses ~14% energy in the mature state of PSI. PSI triggers a mixing elevation of O(10−5–10−4) m2 s−1 in the upper ocean at the critical latitude, which is several times larger than the background value. The contribution of PSI to the internal tide energy loss and associated enhanced mixing may differ regionally and is closely dependent on the intensity and duration of background internal tide. The results elucidate the far-field dissipation mechanism by PSI in connecting interior mixing with remotely generated K1 internal tides in the Luzon Strait.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun Liu, comealong@126.com
Save