• Anandh, T. S., B. K. Das, B. Kumar, J. Kuttippurath, and A. Chakraborty, 2018: Analyses of the oceanic heat content during 1980–2014 and satellite-era cyclones over Bay of Bengal. Int. J. Climatol., 38, 56195632, https://doi.org/10.1002/joc.5767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anandh, T. S., B. K. Das, J. Kuttippurath, and A. Chakraborty, 2020: A coupled model analyses on the interaction between oceanic eddies and tropical cyclones over the Bay of Bengal. Ocean Dyn., 70, 327337, https://doi.org/10.1007/s10236-019-01330-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Babu, M. T., 1992: Equatorward western boundary current in the Bay of Bengal during November-December 1983. Proc. First Convention, Physical Processes in the Indian Seas, Goa, India, ISPSO, 57–62, http://agris.fao.org/agris-search/search.do?recordID=AV20120140004.

  • Babu, M. T., S. Prasanna Kumar, and D. P. Rao, 1991: A subsurface cyclonic eddy in the Bay of Bengal. J. Mar. Res., 49, 403410, https://doi.org/10.1357/002224091784995846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babu, M. T., Y. V. B. Sarma, V. S. N. Murty, and P. Vethamony, 2003: On the circulation in the Bay of Bengal during northern spring inter-monsoon (March–April 1987). Deep-Sea Res. II, 50, 855865, https://doi.org/10.1016/S0967-0645(02)00609-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behara, A., and P. N. Vinayachandran, 2016: An OGCM study of the impact of rain and river water forcing on the Bay of Bengal. J. Geophys. Res. Oceans, 121, 24252446, https://doi.org/10.1002/2015JC011325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhagawati, C., S. Pandey, S. Dandapat, and A. Chakraborty, 2018: Dynamical significance of tides over the Bay of Bengal. Dyn. Atmos. Oceans, 82, 89106, https://doi.org/10.1016/j.dynatmoce.2018.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and Coauthors, 2001: BOBMEX: The Bay of Bengal monsoon experiment. Bull. Amer. Meteor. Soc., 82, 22172244, https://doi.org/10.1175/1520-0477(2001)082<2217:BTBOBM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, D., D. Sengupta, E. D’Asaro, R. Venkatesan, and M. Ravichandran, 2019: Response of the salinity-stratified Bay of Bengal to Cyclone Phailin. J. Phys. Oceanogr., 49, 11211140, https://doi.org/10.1175/JPO-D-18-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean. 2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., D. Wang, and Y. Hou, 2012: The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res., 47, 178185, https://doi.org/10.1016/j.csr.2012.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, X., S. P. Xie, J. P. McCreary, Y. Qi, and Y. Du, 2013: Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 816830, https://doi.org/10.1002/jgrc.20075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutler, A. N., and J. C. Swallow, 1984: Surface currents of the Indian Ocean (to 25°S, 100°E): Compiled from historical data archived by the Meteorological Office. Institute of Oceanographic Sciences Rep. 187, 8 pp.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandapat, S., and A. Chakraborty, 2016: Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993–2014: Statistical characteristics, variability and three-dimensional properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 50445054, https://doi.org/10.1109/JSTARS.2016.2585179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandapat, S., A. Chakraborty, and J. Kuttippurath, 2018: Interannual variability and characteristics of the East India Coastal Current associated with Indian Ocean Dipole events using a high resolution regional ocean model. Ocean Dyn., 68, 13211334, https://doi.org/10.1007/s10236-018-1201-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, B. K., T. S. Anandh, J. Kuttippurath, and A. Chakraborty, 2019: Characteristics of the discontinuity of western boundary current in the Bay of Bengal. J. Geophys. Res. Oceans, 124, 44644479, https://doi.org/10.1029/2019JC015235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eigenheer, A., and D. Quadfasel, 2000: Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry. J. Geophys. Res., 105, 32433252, https://doi.org/10.1029/1999JC900291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishna, V. V., V. S. N. Murty, D. Sengupta, S. Shenoy, and N. Araligidad, 2002: Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991. Cont. Shelf Res., 22, 791802, https://doi.org/10.1016/S0278-4343(01)00084-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalan, A. K. S., V. V. Krishna, M. M. Ali, and R. Sharma, 2000: Detection of Bay of Bengal eddies from TOPEX and in situ observations. J. Mar. Res., 58, 721734, https://doi.org/10.1357/002224000321358873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., S. A. Rao, D. Sengupta, and S. Chakravorty, 2016: Monsoons to mixing in the Bay of Bengal: Multiscale air-sea interactions and monsoon predictability. Oceanography, 29, 1827, https://doi.org/10.5670/oceanog.2016.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and P. J. Webster, 2002: Forcing mechanisms of sea level interannual variability in the Bay of Bengal. J. Phys. Oceanogr., 32, 216239, https://doi.org/10.1175/1520-0485(2002)032<0216:FMOSLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary Jr., and K. E. Kohler, 2001: Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J. Geophys. Res., 106, 68956916, https://doi.org/10.1029/2000JC000403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., E. García-Ladona, and J. Font, 2006: Vortices of the Mediterranean Sea: An altimetric perspective. J. Phys. Oceanogr., 36, 87103, https://doi.org/10.1175/JPO2826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jana, S., A. Gangopadhyay, and A. Chakraborty, 2015: Impact of seasonal river input on the Bay of Bengal simulation. Cont. Shelf Res., 104, 4562, https://doi.org/10.1016/j.csr.2015.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jana, S., A. Gangopadhyay, P. F. Lermusiaux, A. Chakraborty, S. Sil, and P. J. Haley Jr., 2018: Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions. J. Mar. Syst., 187, 206222, https://doi.org/10.1016/j.jmarsys.2018.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, and B. Qiu, 2011: Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr., 41, 657665, https://doi.org/10.1175/2010JPO4436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. H., and R. C. Beardsley, 1999: Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res., 104, 15 67915 701, https://doi.org/10.1029/1999JC900108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1987: Satellite observations of a western boundary current in the Bay of Bengal. J. Geophys. Res., 92, 12 97412 978, https://doi.org/10.1029/JC092iC12p12974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Luecke, C. A., and Coauthors, 2017: The global mesoscale eddy available potential energy field in models and observations. J. Geophys. Res. Oceans, 122, 91269143, https://doi.org/10.1002/2017JC013136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, https://doi.org/10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., W. Han, D. Shankar, and S. R. Shetye, 1996: Dynamics of the East India Coastal Current: 2. Numerical solutions. J. Geophys. Res., 101, 13 99314 010, https://doi.org/10.1029/96JC00560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnichenko, O., P. Hacker, N. Maximenko, G. Lagerloef, and J. Potemra, 2016: Optimum interpolation analysis of Aquarius sea surface salinity. J. Geophys. Res. Oceans, 121, 602616, https://doi.org/10.1002/2015JC011343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I. J., 2005: Impact of a coupled ocean wave–tide–circulation system on coastal modeling. Ocean Modell., 8, 203236, https://doi.org/10.1016/j.ocemod.2004.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukherjee, A., D. Shankar, A. Chatterjee, and P. N. Vinayachandran, 2018: Numerical simulation of the observed near-surface East India Coastal Current on the continental slope. Climate Dyn., 50, 39493980, https://doi.org/10.1007/s00382-017-3856-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M., 2012: The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides. Cont. Shelf Res., 47, 107118, https://doi.org/10.1016/j.csr.2012.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M., B. K. Arbic, and J. X. Mitrovica, 2011: Secular trends in ocean tides: Observations and model results. J. Geophys. Res., 116, C05013, https://doi.org/10.1029/2010JC006387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, T. S., and R. F. Henry, 1983: Tides in the Bay of Bengal. J. Geophys. Res., 88, 60696076, https://doi.org/10.1029/JC088iC10p06069.

  • Murty, T. S., and R. A. Flather, 1994: Impact of storm surges in the Bay of Bengal. J. Coastal Res., 149161, https://www.jstor.org/stable/25735595.

    • Search Google Scholar
    • Export Citation
  • Murty, V. S. N., A. Suryanarayana, and D. P. Rao, 1993: Current structure and volume transport across 12 N in the Bay of Bengal. Indian J. Geo-Mar. Sci., 22, 1216, http://nopr.niscair.res.in/handle/123456789/37746.

    • Search Google Scholar
    • Export Citation
  • Nair, P. J., A. Chakraborty, H. Varikoden, P. A. Francis, and J. Kuttippurath, 2018: The local and global climate forcings induced inhomogeneity of Indian rainfall. Sci. Rep., 8, 6026, https://doi.org/10.1038/s41598-018-24021-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., 1993: Global overview. Global guide to tropical cyclone forecasting, World Meteorological Organization Rep. TCP-31, WMO/TC-560, 1.1–1.42.

  • NGDC, 2006: 2-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA, accessed 16 July 2016, https://doi.org/10.7289/V5J1012Q.

    • Crossref
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascual, A., Y. Faugère, G. Larnicol, and P. Y. Le Traon, 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett., 33, L02611, https://doi.org/10.1029/2005GL024633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru current System: A modeling approach. J. Geophys. Res., 110, C10021, https://doi.org/10.1029/2005JC002945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., M. E. Luther, and J. J. O’Brien, 1991: The seasonal circulation of the upper ocean in the Bay of Bengal. J. Geophys. Res., 96, 12 66712 683, https://doi.org/10.1029/91JC01045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, R. R., M. G. Kumar, M. Ravichandran, A. R. Rao, V. V. Gopalakrishna, and P. Thadathil, 2010: Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep-Sea Res. I, 57, 113, https://doi.org/10.1016/j.dsr.2009.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., E. C. Kent, A. J. Matthews, B. G. Webber, S. C. Peatman, and P. N. Vinayachandran, 2018: Intraseasonal variability of air–sea fluxes over the Bay of Bengal during the southwest monsoon. J. Climate, 31, 70877109, https://doi.org/10.1175/JCLI-D-17-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seetha, C. J., H. Varikoden, C. A. Babu, and J. Kuttippurath, 2020: Significant changes in the ENSO-monsoon relationship and associated circulation features on multidecadal timescale. Climate Dyn., 54, 14911506, https://doi.org/10.1007/s00382-019-05071-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senan, R., D. S. Anitha, and D. Sengupta, 2001: Validation of SST and windspeed from TRMM using North Indian Ocean moored buoy observations. CAOS Rep. 2001AS1, 29 pp., http://eprints.iisc.ac.in/id/eprint/110.

  • Shankar, D., 2000: Seasonal cycle of sea level and currents along the coast of India. Curr. Sci., 78, 279288.

  • Shankar, D., J. P. McCreary, W. Han, and S. R. Shetye, 1996: Dynamics of the East India coastal current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J. Geophys. Res., 101, 13 97513 991, https://doi.org/10.1029/96JC00559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., P. K. Saji, and A. M. Almeida, 1999: Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters. J. Mar. Res., 57, 885907, https://doi.org/10.1357/002224099321514088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shetye, S. R., A. D. Gouveia, S. S. C. Shenoi, D. Sundar, G. S. Michael, A. M. Almeida, and K. Santanam, 1990: Hydrography and circulation off the west coast of India during the southwest monsoon 1987. J. Mar. Res., 48, 359378, https://doi.org/10.1357/002224090784988809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shetye, S. R., S. S. C. Shenoi, A. D. Gouveia, G. S. Michael, D. Sundar, and G. Nampoothiri, 1991: Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Cont. Shelf Res., 11, 13971408, https://doi.org/10.1016/0278-4343(91)90042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shetye, S. R., A. D. Gouveia, S. S. C. Shenoi, D. Sundar, G. S. Michael, and G. Nampoothiri, 1993: The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J. Geophys. Res., 98, 945954, https://doi.org/10.1029/92JC02070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shetye, S. R., A. D. Gouveia, D. Shankar, S. S. C. Shenoi, P. N. Vinayachandran, D. Sundar, G. S. Michael, and G. Nampoothiri, 1996: Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J. Geophys. Res., 101, 14 01114 025, https://doi.org/10.1029/95JC03307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sil, S., and A. Chakraborty, 2011: Simulation of East India Coastal features and validation with satellite altimetry and drifter climatology. Int. J. Ocean Climate Syst., 2, 279289, https://doi.org/10.1260/1759-3131.2.4.279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sindhu, B., and A. S. Unnikrishnan, 2013: Characteristics of tides in the Bay of Bengal. Mar. Geod., 36, 377407, https://doi.org/10.1080/01490419.2013.781088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1993: Some historical remarks on the use of nonlinear viscosities. Large Eddy Simulation of Complex Engineering and Geophysical Flows, B. Galperin and St. A. Orszag, Eds., Cambridge University Press, 3–36.

  • Somayajulu, Y. K., V. S. N. Murty, and Y. V. B. Sarma, 2003: Seasonal and inter-annual variability of surface circulation in the Bay of Bengal from TOPEX/Poseidon altimetry. Deep-Sea Res. II, 50, 867880, https://doi.org/10.1016/S0967-0645(02)00610-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suryanarayana, A., V. S. N. Murty, Y. V. B. Sarma, M. T. Babu, D. P. Rao, and J. S. Sastry, 1992: Hydrographic features of the western Bay of Bengal in the upper 500 m under the influence of NE and SW monsoon. Oceanography of the Indian Ocean, B. N. Desai, Ed., Oxford and IBH Publishing, 595–604.

  • Vinayachandran, P. N., S. R. Shetye, D. Sengupta, and S. Gadgil, 1996: Forcing mechanisms of the Bay of Bengal circulation. Curr. Sci., 71, 753763.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of entropy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS Release 2.1 data and products. Int. J. Climatol., 25, 823842, https://doi.org/10.1002/joc.1166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., J. J. O’Brien, and J. Yang, 1991: On the remote forcing of the circulation in the Bay of Bengal. J. Geophys. Res., 96, 20 44920 454, https://doi.org/10.1029/91JC02424.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 399 94 0
Full Text Views 238 127 5
PDF Downloads 289 145 10

Influence of River Discharge and Tides on the Summertime Discontinuity of Western Boundary Current in the Bay of Bengal

View More View Less
  • 1 Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, India
  • | 2 Department of Mathematics, Midnapore College (Autonomous), Midnapore, India
  • | 3 Indian Institute of Tropical Meteorology, Pune, India
Restricted access

Abstract

The East India Coastal Current (EICC), the western boundary current (WBC) in the Bay of Bengal (BOB), is continuous and well directed during pre- and postmonsoon season but is discontinuous during summer monsoon season (June–September). This study examines the individual and combined effects of river discharge and tidal forcing on the EICC discontinuity using high-resolution (1/12°) Regional Ocean Modeling System simulations. Four climatological experiments, a control simulation with normal boundary conditions and three other sensitivity simulations with the same boundary conditions but with river input, tidal forcing, and both together, are conducted. The analysis shows that, during summer monsoon, the southward reversal of EICC from head bay is enhanced with the river input while the tide forcing strengthens the northward EICC from north of Sri Lanka. High horizontal-salinity-gradient flow in the stratified upper ocean caused by the river discharge increases the surface currents. High vertical mixing in tide forcing suppresses the surface features. The strong horizontal diffusivity due to river discharge promotes the eddy genesis and propagation throughout the western BOB. Conversely, tidal oscillation contributes high turbulent buoyancy, which makes the upper ocean relatively unstable, and the discontinuity remains confined to the western boundary. The combined-forcing simulation indicates the dominance of river discharge in the upper layers with suppressed surface features due to tides, which intensify the discontinuity at subsurface. Therefore, the results of this numerical study suggest that the river input and tidal forcing both play important and complementary roles in maintaining the realistic summertime discontinuity in the BOB.

ORCID: 0000-0002-5152-4045.

ORCID: 0000-0003-2364-0169.

ORCID: 0000-0003-4073-8918.

ORCID: 0000-0003-2988-0577.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0133.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arun Chakraborty, arunc@coral.iitkgp.ernet.in

Abstract

The East India Coastal Current (EICC), the western boundary current (WBC) in the Bay of Bengal (BOB), is continuous and well directed during pre- and postmonsoon season but is discontinuous during summer monsoon season (June–September). This study examines the individual and combined effects of river discharge and tidal forcing on the EICC discontinuity using high-resolution (1/12°) Regional Ocean Modeling System simulations. Four climatological experiments, a control simulation with normal boundary conditions and three other sensitivity simulations with the same boundary conditions but with river input, tidal forcing, and both together, are conducted. The analysis shows that, during summer monsoon, the southward reversal of EICC from head bay is enhanced with the river input while the tide forcing strengthens the northward EICC from north of Sri Lanka. High horizontal-salinity-gradient flow in the stratified upper ocean caused by the river discharge increases the surface currents. High vertical mixing in tide forcing suppresses the surface features. The strong horizontal diffusivity due to river discharge promotes the eddy genesis and propagation throughout the western BOB. Conversely, tidal oscillation contributes high turbulent buoyancy, which makes the upper ocean relatively unstable, and the discontinuity remains confined to the western boundary. The combined-forcing simulation indicates the dominance of river discharge in the upper layers with suppressed surface features due to tides, which intensify the discontinuity at subsurface. Therefore, the results of this numerical study suggest that the river input and tidal forcing both play important and complementary roles in maintaining the realistic summertime discontinuity in the BOB.

ORCID: 0000-0002-5152-4045.

ORCID: 0000-0003-2364-0169.

ORCID: 0000-0003-4073-8918.

ORCID: 0000-0003-2988-0577.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0133.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arun Chakraborty, arunc@coral.iitkgp.ernet.in

Supplementary Materials

    • Supplemental Materials (PDF 4.13 MB)
Save