• Anderson, P. S., 2009: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Bound.-Layer Meteor., 131, 345362, https://doi.org/10.1007/s10546-009-9376-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. Moum, 1995: Surface wave–turbulence interactions. scaling ε (z) near the sea surface. J. Phys. Oceanogr., 25, 20252045, https://doi.org/10.1175/1520-0485(1995)025<2025:SWISNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asai, T. and I. Nakasuji, 1973: On the stability of Ekman boundary layer flow with thermally unstable stratification. J. Meteor. Soc. Japan, 51, 2942, https://doi.org/10.2151/jmsj1965.51.1_29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1972: On the inflection point instability of a stratified Ekman boundary layer. J. Atmos. Sci., 29, 850859, https://doi.org/10.1175/1520-0469(1972)029<0850:OTIPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., S.-Y. Jheng, and R.-C. Lien, 2016: Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount. Geophys. Res. Lett., 43, 86548661, https://doi.org/10.1002/2016GL069462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chawla, A., D. M. Spindler, and H. L. Tolman, 2013: Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Modell., 70, 189206, https://doi.org/10.1016/j.ocemod.2012.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czeschel, L., and C. Eden, 2019: Internal wave radiation through surface mixed layer turbulence. J. Phys. Oceanogr., 49, 18271844, https://doi.org/10.1175/JPO-D-18-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., G. Brethouwer, P. Schlatter, and E. Lindborg, 2014: A numerical study of the unstratified and stratified Ekman layer. J. Fluid Mech., 755, 672704, https://doi.org/10.1017/jfm.2014.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncombe, J. R., 2017: Linear theory of roll instabilities in the ocean surface layer. M.S. thesis, Dept. of Ocean, Earth, and Atmospheric Sciences, Oregon State University, 76 pp.

  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astr. Fys., 2, 152.

  • Elachi, C., and J. R. Apel, 1976: Internal wave observations made with an airborne synthetic aperture imaging radar. Geophys. Res. Lett., 3, 647650, https://doi.org/10.1029/GL003i011p00647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etling, D., and R. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65, 215248, https://doi.org/10.1007/BF00705527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Porté-Agel, 2015: Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer. Bound.-Layer Meteor., 155, 397416, https://doi.org/10.1007/s10546-015-0006-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., J. Wells, A. Tejada-Martinez, and C. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, https://doi.org/10.1126/science.1100849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and D. K. Savidge, 2020: Winds, waves, and turbulence on a shallow continental shelf during passage of a tropical storm. J. Phys. Oceanogr., 50, 13411364, https://doi.org/10.1175/JPO-D-20-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, S., and Coauthors, 2016: Stratified coastal ocean interactions with tropical cyclones. Nat. Commun., 7, 10887, https://doi.org/10.1038/ncomms10887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 17971808, https://doi.org/10.1029/JC084iC04p01797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1986: The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech., 18, 265305, https://doi.org/10.1146/annurev.fl.18.010186.001405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. VanRoekel, B. Fox-Kemper, K. Julien, and G. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 3961, https://doi.org/10.1017/S0022112072001065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, S. E., J. R. Koseff, and J. H. Ferziger, 1992: A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237, 499539, https://doi.org/10.1017/S0022112092003513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, https://doi.org/10.1017/S0022112061000317.

  • Hutchins, N., K. Chauhan, I. Marusic, J. Monty, and J. Klewicki, 2012: Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Bound.-Layer Meteor., 145, 273306, https://doi.org/10.1007/s10546-012-9735-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaltenbach, H.-J., T. Gerz, and U. Schumann, 1994: Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech., 280, 140, https://doi.org/10.1017/S0022112094002831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminski, A., and W. Smyth, 2019: Stratified shear instability in a field of pre-existing turbulence. J. Fluid Mech., 862, 639658, https://doi.org/10.1017/jfm.2018.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaylor, R., and A. J. Faller, 1972: Instability of the stratified Ekman boundary layer and the generation of internal waves. J. Atmos. Sci., 29, 497509, https://doi.org/10.1175/1520-0469(1972)029<0497:IOTSEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2019: Coastally generated near-inertial waves. J. Phys. Oceanogr., 49, 29792995, https://doi.org/10.1175/JPO-D-18-0148.1.

  • Khanna, S., and J. G. Brasseur, 1998: Three-dimensional buoyancy-and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55, 710743, https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, https://doi.org/10.1029/2009GL037620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., S.-Y. Chao, and J. P. McCreary, 1983: Transient coastal currents and inertio-gravity waves. Deep-Sea Res., 30A, 10591082, https://doi.org/10.1016/0198-0149(83)90061-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., E. G. Patton, and P. P. Sullivan, 2019: Nonlocal transport and implied viscosity and diffusivity throughout the boundary layer in LES of the Southern Ocean with surface waves. J. Phys. Oceanogr., 49, 26312652, https://doi.org/10.1175/JPO-D-18-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091, https://doi.org/10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemone, M. A., 1976: Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer. J. Atmos. Sci., 33, 13081320, https://doi.org/10.1175/1520-0469(1976)033<1308:MOTEBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, C., and M. Gregg, 1989: Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophys. Res., 94, 62736284, https://doi.org/10.1029/JC094iC05p06273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marmorino, G., and W. Chen, 2019: Use of WorldView-2 along-track stereo imagery to probe a Baltic Sea algal spiral. Remote Sens., 11, 865, https://doi.org/10.3390/rs11070865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marmorino, G., G. Smith, and G. Lindemann, 2005: Infrared imagery of large-aspect-ratio Langmuir circulation. Cont. Shelf Res., 25 (1), 16, https://doi.org/10.1016/j.csr.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marusic, I., B. J. McKeon, P. A. Monkewitz, H. M. Nagib, A. J. Smits, and K. R. Sreenivasan, 2010: Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids, 22, 065103, https://doi.org/10.1063/1.3453711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., A. Berger, G. Krahmann, M. Dengler, and J. R. Carpenter, 2019: A dynamic flight model for slocum gliders and implications for turbulence microstructure measurements. J. Atmos. Oceanic Technol., 36, 281296, https://doi.org/10.1175/JTECH-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, 456A, 12171280, https://doi.org/10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, 2008: Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett., 35, L13602, https://doi.org/10.1029/2008GL033856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohr, J., E. Itsweire, K. Helland, and C. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77111, https://doi.org/10.1017/S0022112088002332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savelyev, I., and Coauthors, 2018a: Aerial observations of symmetric instability at the north wall of the Gulf Stream. Geophys. Res. Lett., 45, 236244, https://doi.org/10.1002/2017GL075735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savelyev, I., and Coauthors, 2018b: Airborne remote sensing of the upper ocean turbulence during CASPER-East. Remote Sens., 10, 1224, https://doi.org/10.3390/rs10081224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1994: Detailed observations of a naturally occurring shear instability. J. Geophys. Res., 99, 10 04910 073, https://doi.org/10.1029/94JC00168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seroka, G., T. Miles, Y. Xu, J. Kohut, O. Schofield, and S. Glenn, 2016: Hurricane Irene sensitivity to stratified coastal ocean cooling. Mon. Wea. Rev., 144, 35073530, https://doi.org/10.1175/MWR-D-15-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaun-Johnston, T. M., and D. L. Rudnick, 2009: Observations of the transition layer. J. Phys. Oceanogr., 39, 780797, https://doi.org/10.1175/2008JPO3824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, https://doi.org/10.1175/JPO-D-10-05016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., J. Duncombe, and R. M. Samelson, 2017: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part II: Forced simulations. J. Phys. Oceanogr., 47, 24292454, https://doi.org/10.1175/JPO-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515664, https://doi.org/10.1029/91JC03118.

  • Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res., 121, 908933, https://doi.org/10.1002/2015JC011089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smits, A. J., B. J. McKeon, and I. Marusic, 2011: High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech., 43, 353375, https://doi.org/10.1146/annurev-fluid-122109-160753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W., J. Nash, and J. Moum, 2019: Self-organized criticality in geophysical turbulence. Sci. Rep., 9, 3747, https://doi.org/10.1038/s41598-019-39869-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., 2003: Secondary Kelvin–Helmholtz instability in weakly stratified shear flow. J. Fluid Mech., 497, 6798, https://doi.org/10.1017/S0022112003006591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13271342, https://doi.org/10.1063/1.870385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sous, D., J. Sommeria, and D. Boyer, 2013: Friction law and turbulent properties in a laboratory Ekman boundary layer. Phys. Fluids, 25, 046602, https://doi.org/10.1063/1.4802045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, J. W., and P. P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 13, 18941907, https://doi.org/10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512553, https://doi.org/10.1017/jfm.2019.655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., E. Skyllingstad, J. R. Ledwell, B. Concannon, E. A. Terray, D. Birch, S. D. Pierce, and B. Cervantes, 2014: Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer. Geophys. Res. Lett., 41, 75847590, https://doi.org/10.1002/2014GL061637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatro, P. R., and E. Mollo-Christensen, 1967: Experiments on Ekman layer instability. J. Fluid Mech., 28, 531543, https://doi.org/10.1017/S0022112067002289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2016: Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophys. Res. Lett., 43, 57845792, https://doi.org/10.1002/2016GL069106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. dissertation, University of California, San Diego, 230 pp.

  • Tejada-Martinez, A., and C. Grosch, 2007: Langmuir turbulence in shallow water. Part II. Large-eddy simulation. J. Fluid Mech., 576, 63108, https://doi.org/10.1017/S0022112006004587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2002: The axial coherence of Kelvin–Helmholtz billows. Quart. J. Roy. Meteor. Soc., 128, 15291542, https://doi.org/10.1002/qj.200212858307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., and Z. Liu, 2009: Marginal instability? J. Phys. Oceanogr., 39, 23732381, https://doi.org/10.1175/2009JPO4153.1.

  • Turner, J. S., 1979: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Van Roekel, L., B. Fox-Kemper, P. Sullivan, P. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and J. R. Koseff, 2016: On the flux Richardson number in stably stratified turbulence. J. Fluid Mech., 798, R1, https://doi.org/10.1017/jfm.2016.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watkins, C., and D. Whitt, 2020: Data for large-aspect-ratio structures in simulated ocean surface boundary layer turbulence under a hurricane. Figshare, accessed 16 June 2020, https://doi.org/10.6084/m9.figshare.12486056.v5.

    • Crossref
    • Export Citation
  • Whitt, D. B., and J. R. Taylor, 2017: Energetic submesoscales maintain strong mixed layer stratification during an autumn storm. J. Phys. Oceanogr., 47, 24192427, https://doi.org/10.1175/JPO-D-17-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., M. Lévy, and J. R. Taylor, 2019: Submesoscales enhance storm-driven vertical mixing of nutrients: Insights from a biogeochemical large eddy simulation. J. Geophys. Res. Oceans, 124, 81408165, https://doi.org/10.1029/2019JC015370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and T. M. Dillon, 1991: Internal waves and mixing in the upper equatorial Pacific Ocean. J. Geophys. Res., 96, 71157125, https://doi.org/10.1029/90JC02727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971002, https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 594 133 0
Full Text Views 259 162 23
PDF Downloads 243 119 14

Large-Aspect-Ratio Structures in Simulated Ocean Surface Boundary Layer Turbulence under a Hurricane

View More View Less
  • 1 Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
  • | 2 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

A large-eddy simulation (LES) initialized and forced using observations is used to conduct a process study of ocean surface boundary layer (OSBL) turbulence in a 2-km box of ocean nominally under Hurricane Irene (2011) in 35 m of water on the New Jersey shelf. The LES captures the observed deepening, cooling, and persistent stratification of the OSBL as the storm approaches and passes. As the storm approaches, surface-intensified Ekman-layer rolls, with horizontal wavelengths of about 200 m and horizontal-to-vertical aspect and velocity magnitude ratios of about 20, dominate the kinetic energy and increase the turbulent Prandtl number from about 1 to 1.5 due partially to their restratifying vertical buoyancy flux. However, as the storm passes, these rolls are washed away in a few hours due to the rapid rotation of the wind. In the bulk OSBL, the gradient Richardson number of the mean profiles remains just above (just below) 1/4 as the storm approaches (passes). At the base of the OSBL, large-aspect-ratio Kelvin–Helmholtz billows, with Prandtl number below 1, intermittently dominate the kinetic energy. Overall, large-aspect-ratio covariance modifies the net vertical fluxes of buoyancy and momentum by about 10%, but these fluxes and the analogous diffusivity and viscosity still approximately collapse to time-independent dimensionless profiles, despite rapid changes in the forcing and the large structures. That is, the evolutions of the mean temperature and momentum profiles, which are driven by the net vertical flux convergences, mainly reflect the evolution of the wind and the initial ocean temperature profile.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0134.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel B. Whitt, dwhitt@ucar.edu

Abstract

A large-eddy simulation (LES) initialized and forced using observations is used to conduct a process study of ocean surface boundary layer (OSBL) turbulence in a 2-km box of ocean nominally under Hurricane Irene (2011) in 35 m of water on the New Jersey shelf. The LES captures the observed deepening, cooling, and persistent stratification of the OSBL as the storm approaches and passes. As the storm approaches, surface-intensified Ekman-layer rolls, with horizontal wavelengths of about 200 m and horizontal-to-vertical aspect and velocity magnitude ratios of about 20, dominate the kinetic energy and increase the turbulent Prandtl number from about 1 to 1.5 due partially to their restratifying vertical buoyancy flux. However, as the storm passes, these rolls are washed away in a few hours due to the rapid rotation of the wind. In the bulk OSBL, the gradient Richardson number of the mean profiles remains just above (just below) 1/4 as the storm approaches (passes). At the base of the OSBL, large-aspect-ratio Kelvin–Helmholtz billows, with Prandtl number below 1, intermittently dominate the kinetic energy. Overall, large-aspect-ratio covariance modifies the net vertical fluxes of buoyancy and momentum by about 10%, but these fluxes and the analogous diffusivity and viscosity still approximately collapse to time-independent dimensionless profiles, despite rapid changes in the forcing and the large structures. That is, the evolutions of the mean temperature and momentum profiles, which are driven by the net vertical flux convergences, mainly reflect the evolution of the wind and the initial ocean temperature profile.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0134.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel B. Whitt, dwhitt@ucar.edu

Supplementary Materials

    • Supplemental Materials (ZIP 71.3 MB)
Save