• Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298, 17691773, https://doi.org/10.1126/science.1076252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amrhein, D. E., C. Wunsch, O. Marchal, and G. Forget, 2018: A global glacial ocean state estimate constrained by upper-ocean temperature proxies. J. Climate, 31, 80598079, https://doi.org/10.1175/JCLI-D-17-0769.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austermann, J., J. X. Mitrovica, K. Latychev, and G. A. Milne, 2013: Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nat. Geosci., 6, 553557, https://doi.org/10.1038/ngeo1859

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassett, S., G. Milne, M. Bentley, and P. Huybrechts, 2007: Modelling Antarctic sea-level data to explore the possibility of a dominant Antarctic contribution to meltwater pulse 1A. Quat. Sci. Rev., 26, 21132127, https://doi.org/10.1016/j.quascirev.2007.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, J., and Coauthors, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355371, https://doi.org/10.1080/01490410903297766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bereiter, B., K. Kawamura, and J. P. Severinghaus, 2018a: New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Commun. Mass Spectrom., 32, 801814, https://doi.org/10.1002/rcm.8099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bereiter, B., S. Shackleton, D. Baggenstos, K. Kawamura, and J. Severinghaus, 2018b: Mean global ocean temperatures during the last glacial transition. Nature, 553, 3944, https://doi.org/10.1038/nature25152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, A., Q. Yin, H. Nifenecker, and J. Poitou, 2017: Slowdown of global surface air temperature increase and acceleration of ice melting. Earth’s Future, 5, 811822, https://doi.org/10.1002/2017EF000554

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds. Cambridge University Press, 385–432.

  • Breitkreuz, C., A. Paul, and M. Schulz, 2019: A dynamical reconstruction of the last glacial maximum ocean state constrained by global oxygen isotope data. Climate Past Discuss., https://doi.org/10.5194/cp-2019-52.

    • Search Google Scholar
    • Export Citation
  • Carlson, A. E., L. Tarasov, and T. Pico, 2018: Rapid Laurentide ice-sheet advance towards southern Last Glacial Maximum limit during marine isotope stage 3. Quat. Sci. Rev., 196, 118123, https://doi.org/10.1016/j.quascirev.2018.07.039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P. U., and L. Tarasov, 2014: Closing the sea level budget at the last glacial maximum. Proc. Natl. Acad. Sci. USA, 111, 15 86115 862, https://doi.org/10.1073/pnas.1418970111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., T. M. Merlis, and J. B. Palter, 2016: Destabilization of glacial climate by the radiative impact of Atlantic Meridional Overturning Circulation disruptions. Geophys. Res. Lett., 43, 82148221, https://doi.org/10.1002/2016GL069846

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2012: Tracer transport timescales and the observed Atlantic-Pacific lag in the timing of the last Termination. Paleoceanography, 27, PA3225, https://doi.org/10.1029/2011PA002273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2014: How much did Glacial North Atlantic Water shoal? Paleoceanography, 29, 190209, https://doi.org/10.1002/2013PA002557

  • Gebbie, G., C. D. Peterson, L. E. Lisiecki, and H. J. Spero, 2015: Global-mean δ13C and its uncertainty in a glacial state estimate. Quat. Sci. Rev., 125, 144159, https://doi.org/10.1016/j.quascirev.2015.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., A. R. Simms, and L. E. Lisiecki, 2019: Why estimates of deglacial ice loss should be biased low. Earth Planet. Sci. Lett., 515, 112124, https://doi.org/10.1016/j.epsl.2019.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2004: How nonlinearities in the equation of state of seawater can confound estimates of steric sea level change. J. Geophys. Res., 109, C03005, https://doi.org/10.1029/2003JC002012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomez, N., J. X. Mitrovica, M. E. Tamisiea, and P. U. Clark, 2010: A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet. Geophys. J. Int., 180, 623634, https://doi.org/10.1111/j.1365-246X.2009.04419.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE Global Hydrographic Climatology. Tech. Rep. 35, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, 52 pp.

  • Gregory, J. M., and Coauthors, 2013: Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J. Climate, 26, 44764499, https://doi.org/10.1175/JCLI-D-12-00319.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2019: Concepts and terminology for sea level: Mean, variability and change, both local and global. Surv. Geophys., 40, 12511289, https://doi.org/10.1007/s10712-019-09525-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. J. Greatbatch, 2012: Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modell., 51, 3772, https://doi.org/10.1016/j.ocemod.2012.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hesse, T., M. Butzin, T. Bickert, and G. Lohmann, 2011: A model-data comparison of δ13C in the glacial Atlantic Ocean. Paleoceanography, 26, PA3220, https://doi.org/10.1029/2010PA002085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater–2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO, 196 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Kucera, M., A. Rosell-Mele, R. Schneider, C. Waelbroeck, and M. Weinelte, 2006: Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO). Quat. Sci. Rev., 24, 8131107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, https://doi.org/10.1029/2012GL052952

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurahashi-Nakamura, T., A. Paul, and M. Losch, 2017: Dynamical reconstruction of the global ocean state during the last glacial maximum. Paleoceanography, 32, 326350, https://doi.org/10.1002/2016PA003001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeck, K., and J. Chappell, 2001: Sea level change through the last glacial cycle. Science, 292, 679686, https://doi.org/10.1126/science.1059549

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambeck, K., H. Rouby, A. Purcell, Y. Sun, and M. Sambridge, 2014: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA, 111, 15 29615 303, https://doi.org/10.1073/pnas.1411762111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levermann, A., P. U. Clark, B. Marzeion, G. A. Milne, D. Pollard, V. Radic, and A. Robinson, 2013: The multimillennial sea-level commitment of global warming. Proc. Natl. Acad. Sci. USA, 110, 13 74513 750, https://doi.org/10.1073/pnas.1219414110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Lowe, J. A., and J. M. Gregory, 2006: Understanding projections of sea level rise in a Hadley Centre coupled climate model. J. Geophys. Res., 111, C11014, https://doi.org/10.1029/2005JC003421

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maris, M., B. De Boer, S. Ligtenberg, M. Crucifix, W. Van De Berg, and J. Oerlemans, 2014: Modelling the evolution of the Antarctic ice sheet since the last interglacial. Cryosphere, 8, 13471360, https://doi.org/10.5194/tc-8-1347-2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.-M., and M. Whitfield, 1983: The significance of the river input of chemical elements to the ocean. Trace Metals in Sea Water, Springer, 265–296.

    • Crossref
    • Export Citation
  • McDougall, T. J., and R. Feistel, 2003: What causes the adiabatic lapse rate? Deep-Sea Res. I, 50, 15231535, https://doi.org/10.1016/j.dsr.2003.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, N. P., J. T. Overpeck, and B. L. Otto-Bliesner, 2011: The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett., 38, L14605, https://doi.org/10.1029/2011GL048280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Mitrovica, J. X., and W. R. Peltier, 1991: On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res., 96, 20 05320 071, https://doi.org/10.1029/91JB01284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 2003: Ocean freshening, sea level rising. Science, 300, 20412043, https://doi.org/10.1126/science.1085534

  • Nakada, M., J. Okuno, and Y. Yokoyama, 2016: Total meltwater volume since the Last Glacial Maximum and viscosity structure of Earth’s mantle inferred from relative sea level changes at Barbados and Bonaparte Gulf and GIA-induced J2. Geophys. J. Int., 204, 12371253, https://doi.org/10.1093/gji/ggv520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, H., A. Hubbard, K. Andreassen, M. Winsborrow, and A. P. Stroeven, 2016: The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat. Sci. Rev., 153, 97121, https://doi.org/10.1016/j.quascirev.2016.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, C. D., L. E. Lisiecki, and J. V. Stern, 2014: Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography, 29, 549563, https://doi.org/10.1002/2013PA002552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pico, T., L. Birch, J. Weisenberg, and J. Mitrovica, 2018: Refining the Laurentide Ice Sheet at Marine Isotope Stage 3: A data-based approach combining glacial isostatic simulations with a dynamic ice model. Quat. Sci. Rev., 195, 171179, https://doi.org/10.1016/j.quascirev.2018.07.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piecuch, C., and R. Ponte, 2011: Mechanisms of interannual steric sea level variability. Geophys. Res. Lett., 38, L15605, https://doi.org/10.1029/2011GL048440

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilson, M. E. Q., 1998: An Introduction to the Chemistry of the Sea. Prentice Hall, 431 pp.

  • Rye, C. D., A. C. N. Garabato, P. R. Holland, M. P. Meredith, A. G. Nurser, C. W. Hughes, A. C. Coward, and D. J. Webb, 2014: Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat. Geosci., 7, 732735, https://doi.org/10.1038/ngeo2230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simms, A. R., L. E. Lisiecki, G. Gebbie, P. Whitehouse, and J. F. Clark, 2019: Balancing the Last Glacial Maximum (LGM) sea-level budget. Quat. Sci. Rev., 205, 143153, https://doi.org/10.1016/j.quascirev.2018.12.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., and N. J. Shackleton, 2005: An Atlantic lead over Pacific deep-water change across Termination I: Implications for the application of the marine isotope stage stratigraphy. Quat. Sci. Rev., 24, 571580, https://doi.org/10.1016/j.quascirev.2004.11.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, https://doi.org/10.1146/annurev-marine-121211-172406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tada, R., and R. Siever, 1986: Experimental knife-edge pressure solution of halite. Geochim. Cosmochim. Acta, 50, 2936, https://doi.org/10.1016/0016-7037(86)90045-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., and Coauthors, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, https://doi.org/10.1038/ngeo411

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, Y., T. M. Esat, and K. Lambeck, 2001: Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. Earth Planet. Sci. Lett., 193, 579587, https://doi.org/10.1016/S0012-821X(01)00515-5

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 269 92 0
Full Text Views 123 61 6
PDF Downloads 135 68 8

Cancelation of Deglacial Thermosteric Sea Level Rise by a Barosteric Effect

View More View Less
  • 1 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Sea level rise over the last deglaciation is dominated by the mass of freshwater added to the oceans by the melting of the great ice sheets. While the steric effect of changing seawater density is secondary over the last 20 000 years, processes connected to deglacial warming, the redistribution of salt, and the pressure load of meltwater all influence sea level rise by more than a meter. Here we develop a diagnostic for steric effects that is valid when oceanic mass is changing. This diagnostic accounts for seawater compression due to the added overlying pressure of glacial meltwater, which is here defined to be a barosteric effect. Analysis of three-dimensional global seawater reconstructions of the last deglaciation indicates that thermosteric height change (1.0–1.5 m) is counteracted by barosteric (−1.9 m) and halosteric (from −0.4 to 0.0 m) effects. The total deglacial steric effect from −0.7 to −1.1 m has the opposite sign of analyses that assume that thermosteric expansion is dominant. Despite the vertical oceanic structure not being well constrained during the Last Glacial Maximum, net seawater contraction appears robust as it occurs in four reconstructions that were produced using different paleoceanographic datasets. Calculations that do not account for changes in ocean pressure give the misleading impression that steric effects enhanced deglacial sea level rise.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Geoffrey Gebbie, ggebbie@whoi.edu

Abstract

Sea level rise over the last deglaciation is dominated by the mass of freshwater added to the oceans by the melting of the great ice sheets. While the steric effect of changing seawater density is secondary over the last 20 000 years, processes connected to deglacial warming, the redistribution of salt, and the pressure load of meltwater all influence sea level rise by more than a meter. Here we develop a diagnostic for steric effects that is valid when oceanic mass is changing. This diagnostic accounts for seawater compression due to the added overlying pressure of glacial meltwater, which is here defined to be a barosteric effect. Analysis of three-dimensional global seawater reconstructions of the last deglaciation indicates that thermosteric height change (1.0–1.5 m) is counteracted by barosteric (−1.9 m) and halosteric (from −0.4 to 0.0 m) effects. The total deglacial steric effect from −0.7 to −1.1 m has the opposite sign of analyses that assume that thermosteric expansion is dominant. Despite the vertical oceanic structure not being well constrained during the Last Glacial Maximum, net seawater contraction appears robust as it occurs in four reconstructions that were produced using different paleoceanographic datasets. Calculations that do not account for changes in ocean pressure give the misleading impression that steric effects enhanced deglacial sea level rise.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Geoffrey Gebbie, ggebbie@whoi.edu
Save