• Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shriver, 2013: On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr., 43, 283300, https://doi.org/10.1175/JPO-D-11-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, O., P. Bartello, and D. N. Straub, 2018: On Boussinesq dynamics near the tropopause. J. Atmos. Sci., 75, 571585, https://doi.org/10.1175/JAS-D-17-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, and K. G. Speer, 2016: Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico. Geophys. Res. Lett., 43, 10 85610 863, https://doi.org/10.1002/2016GL069405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052%3C4410:GAAICI%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bierdel, L., C. Snyder, S.-H. Park, and W. C. Skamarock, 2016: Accuracy of rotational and divergent kinetic energy spectra diagnosed from flight-track winds. J. Atmos. Sci., 73, 32733286, https://doi.org/10.1175/JAS-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biferale, L., 2003: Shell models of energy cascade in turbulence. Annu. Rev. Fluid Mech., 35, 441468, https://doi.org/10.1146/annurev.fluid.35.101101.161122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biri, S., N. Serra, M. G. Scharffenberg, and D. Stammer, 2016: Atlantic sea surface height and velocity spectra inferred from satellite altimetry and a hierarchy of numerical simulations. J. Geophys. Res. Oceans, 121, 41574177, https://doi.org/10.1002/2015JC011503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, https://doi.org/10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave-vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, and O. Bühler, 2014: Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum. Proc. Natl. Acad. Sci. USA, 111, 17 03317 038, https://doi.org/10.1073/pnas.1410772111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., P. Klein, B. L. Hua, G. Lapeyre, J. C. McWilliams, 2008a: Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech., 604, 165174, https://doi.org/10.1017/S0022112008001110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current system. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celani, A., M. Cencini, A. Mazzino, and M. Vergassola, 2004: Active and passive fields face to face. New J. Phys., 6, 72, https://doi.org/10.1088/1367-2630/6/1/072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and J. D. Barrick, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific exploratory missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes. J. Geophys. Res., 104, 16 29716 308, https://doi.org/10.1029/1999JD900068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, C. R., M. B. Parlange, G. G. Katul, and J. D. Albertson, 1996: Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res., 32, 16811688, https://doi.org/10.1029/96WR00287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., A. Vallgren, and E. Lindborg, 2013: The route to dissipation in strongly stratified and rotating flows. J. Fluid Mech., 720, 66103, https://doi.org/10.1017/jfm.2012.611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, P.-Y Le Traon, 2016: Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans, 121, 49104927, https://doi.org/10.1002/2015JC010904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, 296 pp.

    • Crossref
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica basin. J. Geophys. Res., 96, 16 70916 719, https://doi.org/10.1029/91JC01385.

  • Held, I., R. T. Pierrehumbert, S. Garner, and K. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120, https://doi.org/10.1017/S0022112095000012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, S., D. Chaudhuri, M. Mathur, D. Rudnick, D. Sengupta, H. Simmons, A. Tandon, and R. Venkatesan, 2016: Decay mechanisms of near-inertial mixed layer oscillations in the Bay of Bengal. Oceanography, 29 (2), 180191, https://doi.org/10.5670/oceanog.2016.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2016: Balance dynamics in rotating stratified turbulence. J. Fluid Mech., 795, 914949, https://doi.org/10.1017/jfm.2016.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kailasnath, P., K. R. Sreenivasan, and G. Stolovitzsky, 1992: Probability density of velocity increments in turbulent flows. Phys. Rev. Lett., 68, 27662769, https://doi.org/10.1103/PhysRevLett.68.2766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatri, H., J. Sukhatme, A. Kumar, and M. K. Verma, 2018: Surface ocean enstrophy, kinetic energy fluxes, and spectra from satellite altimetry. J. Geophys. Res. Oceans, 123, 38753892, https://doi.org/10.1029/2017JC013516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitamura, Y., and Y. Matsuda, 2006: The k H 3 and k H 5 / 3 energy spectra in stratified turbulence. Geophys. Res. Lett., 33, L05809, https://doi.org/10.1029/2005GL024996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. L. Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J., W. Crawford, M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2015: Along-isopycnal variability of spice in the North Pacific. J. Geophys. Res. Oceans, 120, 22872307, https://doi.org/10.1002/2013JC009421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2017: Surface quasi-geostrophy. Fluids, 2, 7, https://doi.org/10.3390/fluids2010007.

  • Le Traon, P. Y., P. Klein, B. L. Hua, and G. Dibarboure, 2008: Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? J. Phys. Oceanogr., 38, 11371142, https://doi.org/10.1175/2007JPO3806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2007: Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64, 10171025, https://doi.org/10.1175/JAS3864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2015: A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, https://doi.org/10.1017/jfm.2014.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., and G. Brethouwer, 2007: Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech., 586, 83108, https://doi.org/10.1017/S0022112007007082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohse, D., and K.-Q. Xia, 2010: Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech., 42, 335364, https://doi.org/10.1146/annurev.fluid.010908.165152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and et al. , 2016: Adrift upon a salinity-stratified sea: A view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography, 29, 134145, https://doi.org/10.5670/oceanog.2016.46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., T. Paluskiewicz, M. Ravichandran, D. Sengupta, and A. Tandon, 2016: Introduction to the special issue on the Bay of Bengal: From monsoons to mixing. Oceanography, 29 (2), 1417, https://doi.org/10.5670/oceanog.2016.34.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Mohanty, S., A. D. Rao, and H. K. Pradhan, 2018: Estimates of internal tide energetics in the western Bay of Bengal. IEEE J. Oceanic Eng., 43, 10151023, https://doi.org/10.1109/JOE.2017.2765978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, T. S., and R. S. Henry, 1983: Tides in the Bay of Bengal. J. Geophys. Res., 88, 60696076, https://doi.org/10.1029/JC088iC10p06069.

  • Nadiga, B., 2014: Nonlinear evolution of a baroclinic wave and imbalanced dissipation. J. Fluid Mech., 756, 9651006, https://doi.org/10.1017/jfm.2014.464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noullez, A., G. Wallace, W. Lempert, R. B. Miles, U. Frisch, 1997: Transverse velocity increments in turbulent flow using the RELIEF technique. J. Fluid Mech., 339, 287307, https://doi.org/10.1017/S0022112097005338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okhitani, K., and M. Yamada, 1997: Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow. Phys. Fluids, 9, 876882, https://doi.org/10.1063/1.869184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paladin, G., and A. Vulipiani, 1987: Anomalous scaling laws in multifractal objects. Phys. Rep., 156, 147225, https://doi.org/10.1016/0370-1573(87)90110-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, N., and J. Sukhatme, 2019: Seasonality of surface stirring by geostrophic flows in the Bay of Bengal. Deep-Sea Res. II, 172, 104684, https://doi.org/10.1016/J.DSR2.2019.104684.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., I. M. Held, and K. L. Swanson, 1994: Spectra of local and nonlocal two-dimensional turbulence. Chaos Solitons Fractals, 4, 11111116, https://doi.org/10.1016/0960-0779(94)90140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., T. M. Özgökmen, D. J. Bogucki, and A. D. Kirwan, 2017: Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations. Phys. Fluids, 29, 020701, https://doi.org/10.1063/1.4974331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/NCOMMS14055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the World Ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and et al. , 2018: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479509, https://doi.org/10.1175/JPO-D-16-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmel, M., J. Sukhatme, and L. M. Smith, 2014: Nonlinear gravity-wave interactions in stratified turbulence. Theor. Comput. Fluid Dyn., 28, 131145, https://doi.org/10.1007/s00162-013-0305-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, J. G., B. K. Arbic, J. F. Shriver, E. J. Metzger, and A. J. Wallcraft, 2012: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res., 117, C12012, https://doi.org/10.1029/2012JC008364.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, and S. T. Gille, 2016: Mesoscale to submesoscale wavenumber spectra in drake passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, S., H. T. Pham, S. Ramachandran, J. D. Nash, A. Tandon, J. Buckley, A. A. Lotliker, and M. M. Omand, 2016: The interplay between submesoscale instabilities and turbulence in the surface layer of the Bay of Bengal. Oceanography, 29, 146157, https://doi.org/10.5670/oceanog.2016.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharffenberg, M. G., and D. Stammer, 2011: Statistical parameters of the geostrophic ocean flow field estimated from the Jason-1-TOPEX/Poseidon tandem mission. J. Geophys. Res., 116, C12011, https://doi.org/10.1029/2011JC007376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., R. A. Shaw, and Z. Warhaft, 2010: Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. J. Atmos. Sci., 67, 262273, https://doi.org/10.1175/2009JAS3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. N. Bharath Raj, M. Ravichandran, J. Sree Lekha, and F. Papa, 2016: Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophys. Res. Lett., 43, 44484456, https://doi.org/10.1002/2016GL068339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • She, Z.-S., E. Jackson, and S. Orszag, 1988: Scale-dependent intermittency and coherence in turbulence. J. Sci. Comput., 3, 407434, https://doi.org/10.1007/BF01065179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., and R. A. Antonia, 1997: The phenomenology of small scale turbulence. Annu. Rev. Fluid Mech., 29, 435472, https://doi.org/10.1146/annurev.fluid.29.1.435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., and R. T. Pierrehumbert, 2002: Surface quasigeostrophic turbulence: The study of an active scalar. Chaos, 12, 439450, https://doi.org/10.1063/1.1480758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., and L. M. Smith, 2008: Vortical and wave modes in 3D rotating stratified flows: Random large-scale forcing. Geophys. Astrophys. Fluid Dyn., 102, 437455, https://doi.org/10.1080/03091920801915318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., A. J. Majda, and L. M. Smith, 2012: Two-dimensional moist stratified turbulence and the emergence of vertically sheared horizontal flows. Phys. Fluids, 24, 036602, https://doi.org/10.1063/1.3694805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, https://doi.org/10.1073/pnas.0605494103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallgren, A., E. Duesebio, and E. Lindborg, 2011: Possible explanation of the atmospheric kinetic and potential energy spectra. Phys. Rev. Lett., 107, 268501, https://doi.org/10.1103/PhysRevLett.107.268501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., C. N. Flagg, K. Donohue, and H. T. Rossby, 2010: Wavenumber spectrum in the Gulf Stream from shipboard ADCP observations and comparison with altimetry measurements in the submesoscale range (1–200 km). J. Phys. Oceanogr., 40, 840844, https://doi.org/10.1175/2009JPO4330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and et al. , 2016: ASIRI: An ocean–atmosphere initiative for Bay of Bengal. Bull. Amer. Meteor. Soc., 97, 18591884, https://doi.org/10.1175/BAMS-D-14-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, https://doi.org/10.1175/JPO-D-13-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and L.-L. Fu, 2012: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height. J. Phys. Oceanogr., 42, 22292233, https://doi.org/10.1175/JPO-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X.-H., D.-P. Wang, and D. Chen, 2015: Global wavenumber spectrum with corrections for altimeter high-frequency noise. J. Phys. Oceanogr., 45, 495503, https://doi.org/10.1175/JPO-D-14-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 130 130 21
Full Text Views 38 38 6
PDF Downloads 43 43 9

Near-Surface Ocean Kinetic Energy Spectra and Small-Scale Intermittency from Ship-Based ADCP Data in the Bay of Bengal

View More View Less
  • 1 Centre for Atmospheric and Oceanic Sciences, and Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
  • | 2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
  • | 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 4 Indian National Centre for Ocean Information Services, Hyderabad, India
  • | 5 Centre for Atmospheric and Oceanic Sciences, and Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India
© Get Permissions
Restricted access

Abstract

Horizontal currents in the Bay of Bengal were measured on eight cruises covering a total of 8600 km using a 300-kHz acoustic Doppler current profiler (ADCP). The cruises are distributed over multiple seasons and regions of the Bay. Horizontal wavenumber spectra of these currents over depths of 12–54 m and wavelengths from 2 to 400 km were decomposed into rotational and divergent components assuming isotropy. An average of across- and along-track spectra over all cruises shows that the spectral slope of horizontal kinetic energy for wavelengths of 10–80-km scales with an exponent of −1.7 ± 0.05, which transitions to a steeper slope for wavelengths above 80 km. The rotational component is significantly larger than the divergent component at scales greater than 80 km, while the ratio of the two is nearly constant with a mean of 1.16 ± 0.4 between 10 and 80 km. The measurements show a fair amount of variability and spectral levels vary between cruises by about a factor of 5 over 10–100 km. Velocity differences over 10–80 km show probability density functions and structure functions with stretched exponential behavior and anomalous scaling. Comparisons with the Garrett–Munk internal wave spectrum indicate that inertia–gravity waves account for only a modest fraction of the kinetic energy between 10 and 80 km. These constraints suggest that the near-surface flow in the Bay is primarily balanced and follows a forward enstrophy transfer quasigeostrophic regime for wavelengths greater than approximately 80 km, with a larger role for unbalanced rotating stratified turbulence and internal waves at smaller scales.

Corresponding author: Jai Sukhatme, jai.goog@gmail.com

Abstract

Horizontal currents in the Bay of Bengal were measured on eight cruises covering a total of 8600 km using a 300-kHz acoustic Doppler current profiler (ADCP). The cruises are distributed over multiple seasons and regions of the Bay. Horizontal wavenumber spectra of these currents over depths of 12–54 m and wavelengths from 2 to 400 km were decomposed into rotational and divergent components assuming isotropy. An average of across- and along-track spectra over all cruises shows that the spectral slope of horizontal kinetic energy for wavelengths of 10–80-km scales with an exponent of −1.7 ± 0.05, which transitions to a steeper slope for wavelengths above 80 km. The rotational component is significantly larger than the divergent component at scales greater than 80 km, while the ratio of the two is nearly constant with a mean of 1.16 ± 0.4 between 10 and 80 km. The measurements show a fair amount of variability and spectral levels vary between cruises by about a factor of 5 over 10–100 km. Velocity differences over 10–80 km show probability density functions and structure functions with stretched exponential behavior and anomalous scaling. Comparisons with the Garrett–Munk internal wave spectrum indicate that inertia–gravity waves account for only a modest fraction of the kinetic energy between 10 and 80 km. These constraints suggest that the near-surface flow in the Bay is primarily balanced and follows a forward enstrophy transfer quasigeostrophic regime for wavelengths greater than approximately 80 km, with a larger role for unbalanced rotating stratified turbulence and internal waves at smaller scales.

Corresponding author: Jai Sukhatme, jai.goog@gmail.com
Save