• Beal, R. C., T. W. Gerling, D. E. Irvine, F. M. Monaldo, and D. G. Tilley, 1986: Spatial variations of ocean wave directional spectra from the Seasat synthetic aperture radar. J. Geophys. Res., 91, 24332449, https://doi.org/10.1029/JC091iC02p02433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, J. L., 1979: Hurricane Eloise directional wave energy spectra. Proc. 11th Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-3594-MS, https://doi.org/10.4043/3594-MS.

    • Crossref
    • Export Citation
  • Black, P. G., and et al. , 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowyer, P. J., and A. W. MacAfee, 2005: The theory of trapped-fetch waves within tropical cyclones—An operational perspective. Wea. Forecasting, 20, 229244, https://doi.org/10.1175/WAF849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretschneider, C. L., 1959: Hurricane design—Wave practices. Trans. Amer. Soc. Civ. Eng., 124, 3962.

  • Bretschneider, C. L., 1972: A non-dimensional stationary hurricane wave model. Proc. Fourth Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-1517-MS, https://doi.org/10.4043/1517-MS.

    • Crossref
    • Export Citation
  • Collins, C. O., H. Potter, B. Lund, H. Tamura, and H. C. Graber, 2018: Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res. Oceans, 123, 773793, https://doi.org/10.1002/2017JC012943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M., M. Hamilton, and W. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Elachi, C., T. W. Thompson, and D. B. King, 1977: Observations of the ocean wave pattern under Hurricane Gloria with synthetic aperture radar. Science, 198, 609610, https://doi.org/10.1126/science.198.4317.609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esquivel-Trava, B., F. J. Ocampo-Torres, and P. Osuna, 2015: Spatial structure of directional wave spectra in hurricanes. Ocean Dyn., 65, 6576, https://doi.org/10.1007/s10236-014-0791-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D., C. L. Conrad, and F. M. Paul, 2003: Handbook of automated data quality control checks and procedures of the National Data Buoy Center. NOAA/National Data Buoy Center Tech. Doc. 03-02, 44 pp.

  • Gonzalez, F. I., T. E. Thompson, W. E. Brown, and D. E. Weissman, 1982: Seasat wind and wave observations of northeast Pacific Hurricane Iva, 13 August 1978. J. Geophys. Res., 87, 34313438, https://doi.org/10.1029/JC087iC05p03431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and et al. , 1973: Measurements of wind-wave growth and swell decay during the Joint North SeaWave Project (JONSWAP). Deutches Hydrographisches Institut Hydraulic Engineering Rep., 95 pp.

  • Holland, G. J., 1980: An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., J. I. Belanger, and A. Fritz, 2010: A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138, 43934401, https://doi.org/10.1175/2010MWR3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, B., and F. I. Gonzalez, 1986: SIR-B observations of dominant ocean waves near Hurricane Josephine. J. Geophys. Res., 91, 85958598, https://doi.org/10.1029/JC091iC07p08595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., and Q. Chen, 2011: Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Rev. Lett., 38, L19608, https://doi.org/10.1029/2011GL049145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air–sea exchange and remote sensing. J. Phys. Oceanogr., 46, 4156, https://doi.org/10.1175/JPO-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2016: Azimuthal and radial variation of wind-generated surface waves inside tropical cyclones. J. Phys. Oceanogr., 46, 26052621, https://doi.org/10.1175/JPO-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Y. Fan, 2017: Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements: Surface wave and air–sea exchange computation. J. Phys. Oceanogr., 47, 447470, https://doi.org/10.1175/JPO-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2018a: Propagation directions of ocean surface waves inside tropical cyclones. J. Phys. Oceanogr., 48, 14951511, https://doi.org/10.1175/JPO-D-18-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2018b: Estimating maximum significant wave height and dominant wave period inside tropical cyclones. Wea. Forecasting, 33, 955966, https://doi.org/10.1175/WAF-D-17-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Y. Fan, F. J. Ocampo-Torres, and H. García-Nava, 2017: Ocean surface wave spectra inside tropical cyclones. J. Phys. Oceanogr., 47, 23932417, https://doi.org/10.1175/JPO-D-17-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D. B., and O. H. Shemdin, 1978: Radar observations of hurricane wave directions. 16th Int. Conf. Coastal Engineering, Hamburg, Germany, ASCE, 209–226, https://doi.org/10.1061/9780872621909.012.

    • Crossref
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) Project, version 4. NOAA/National Centers for Environmental Information, accessed 27 January 2020, https://doi.org/10.25921/82ty-9e16.

    • Crossref
    • Export Citation
  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., D. E. Cartwright, and N. D. Smith, 1963: Observations of the directional spectrum of sea waves using the motion of a floating buoy. Ocean Wave Spectra, Prentice Hall, 111–136.

  • McLeish, W., and D. B. Ross, 1983: Imaging radar observations of directional properties of ocean waves. J. Geophys. Res., 88, 44074419, https://doi.org/10.1029/JC088iC07p04407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mok, D. K. H., J. C. L. Chan, and K. T. F. Chan, 2018: A 31-year climatology of tropical cyclone size from the NCEP Climate Forecast System Reanalysis. Int. J. Climatol., 38, e796e806, https://doi.org/10.1002/joc.5407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 1993: On hurricane-generated seas. Proc. Second Int. Symp. on Ocean Wave Measurement and Analysis, New Orleans, LA, ASCE, 374–387.

  • Ochi, M. K., and M. H. Chiu, 1982: Nearshore wave spectra measured during Hurricane David. Proc. 18th Int. Conf. on Coastal Engineering, Cape Town, South Africa, ASCE,77–86, https://doi.org/10.1061/9780872623736.005.

    • Crossref
    • Export Citation
  • Patterson, M. M., 1974: Oceanographic data from Hurricane Camille. Proc. Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-2109-MS, https://doi.org/10.4043/2109-MS.

    • Crossref
    • Export Citation
  • Ribal, A., and I. R. Young, 2019: 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data, 6, 77, https://doi.org/10.1038/S41597-019-0108-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2020: Calibration and cross-validation of global ocean wind speed based on scatterometer observations. J. Atmos. Oceanic Technol., 37, 279297, https://doi.org/10.1175/JTECH-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, D. B., 1976: A simplified model for forecasting hurricane generated waves. Bull. Amer. Meteor. Soc., 57, 113115, https://doi.org/10.1175/1520-0477-57.1.95.

    • Search Google Scholar
    • Export Citation
  • SWAMP Group, 1985: Ocean Wave Modelling. Plenum Press, 256 pp.

  • The WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and J.-H. G. M. Alves, 2005: Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Modell., 9, 305323, https://doi.org/10.1016/j.ocemod.2004.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Army Corps of Engineers, 1977: Shore Protection Manual. Vols. I–III, U.S. Army Coastal Engineering Research Center, 1223 pp.

  • Whalen, J. E., and M. K. Ochi, 1978: Variability of wave spectral shapes associated with hurricanes. Proc. Offshore Technology Conf., Houston, TX, Offshore Technology Conference, OTC-3228-MS, https://doi.org/10.4043/3228-MS.

    • Crossref
    • Export Citation
  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048, https://doi.org/10.1175/MWR2831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and et al. , 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1988: A parametric hurricane wave prediction model. J. Waterw. Port Coastal Ocean Eng., 114, 637652, https://doi.org/10.1061/(ASCE)0733-950X(1988)114:5(637).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1994: On the measurement of directional wave spectra. Appl. Ocean Res., 16, 283294, https://doi.org/10.1016/0141-1187(94)90017-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, https://doi.org/10.1016/S0029-8018(97)00011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind-waves. J. Geophys. Res., 111, C08020, https://doi.org/10.1029/2006JC003540.

  • Young, I. R., 2017: A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8, 194, https://doi.org/10.3390/atmos8100194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and G. P. Burchell, 1996: Hurricane generated waves as observed by satellite. Ocean Eng., 23, 761776, https://doi.org/10.1016/0029-8018(96)00001-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and G. Ph. van Vledder, 1993: A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. Roy. Soc. London, 342A, 505524, https://doi.org/10.1098/rsta.1993.0030.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and L. A. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. Part II: Spectral evolution. Coast. Eng., 29, 7999, https://doi.org/10.1016/S0378-3839(96)00007-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and J. Vinoth, 2013: An ‘extended fetch’ model for the spatial distribution of tropical cyclone wind-waves as observed by altimeter. Ocean Eng., 70, 1424, https://doi.org/10.1016/j.oceaneng.2013.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., E. Sanina, and A. V. Babanin, 2017: Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. J. Atmos. Oceanic Technol., 34, 12851306, https://doi.org/10.1175/JTECH-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 315 315 51
Full Text Views 47 47 12
PDF Downloads 55 55 7

The Spatial Distribution of Ocean Waves in Tropical Cyclones

View More View Less
  • 1 Department of Infrastructure Engineering, University of Melbourne, Melbourne, Australia
© Get Permissions
Restricted access

Abstract

The spatial structure of both the wind and wave fields within tropical cyclones is investigated using two large databases. The first of these was compiled from global overpasses of tropical cyclones by satellite altimeters. The second dataset consists of an extensive collection of North American buoy measurements during the passage of tropical cyclones (hurricanes). The combined datasets confirm the vortex structure of the tropical cyclone wind field with the strongest winds to the right (Northern Hemisphere) of the storm. The wave field largely mirrors the wind field but with greater right–left asymmetry that results from the extended fetch to the right of the translating tropical cyclone. The extensive in situ buoy database confirms previous studies indicating that the one-dimensional spectra are generally unimodal. The directional spectra are, however, directionally skewed, consisting of remotely generated waves radiating out from the center of the storm and locally generated wind sea. The one-dimensional wave spectra have many similarities to fetch-limited cases, although for a given peak frequency the spectra contain less energy than for a fetch-limited case. This result is consistent with the fact that much of the wave field is dominated by remotely generated waves.

Corresponding author: Ian R. Young, ian.young@unimelb.edu.au

Abstract

The spatial structure of both the wind and wave fields within tropical cyclones is investigated using two large databases. The first of these was compiled from global overpasses of tropical cyclones by satellite altimeters. The second dataset consists of an extensive collection of North American buoy measurements during the passage of tropical cyclones (hurricanes). The combined datasets confirm the vortex structure of the tropical cyclone wind field with the strongest winds to the right (Northern Hemisphere) of the storm. The wave field largely mirrors the wind field but with greater right–left asymmetry that results from the extended fetch to the right of the translating tropical cyclone. The extensive in situ buoy database confirms previous studies indicating that the one-dimensional spectra are generally unimodal. The directional spectra are, however, directionally skewed, consisting of remotely generated waves radiating out from the center of the storm and locally generated wind sea. The one-dimensional wave spectra have many similarities to fetch-limited cases, although for a given peak frequency the spectra contain less energy than for a fetch-limited case. This result is consistent with the fact that much of the wave field is dominated by remotely generated waves.

Corresponding author: Ian R. Young, ian.young@unimelb.edu.au
Save