• Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. E. Trenberth, and E. Kallen, 2013: Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett., 40, 17541759, https://doi.org/10.1002/grl.50382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Y. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W. J., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, https://doi.org/10.1175/JCLI-D-11-00501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chakravorty, S., C. Gnanaseelan, J. S. Chowdary, and J. J. Luo, 2014: Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J. Geophys. Res. Oceans, 119, 51055122, https://doi.org/10.1002/2013JC009713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. X., W. Q. Han, Y. L. Li, D. X. Wang, and T. Shinoda, 2015: Intraseasonal variability of upwelling in the equatorial Eastern Indian Ocean. J. Geophys. Res. Oceans, 120, 75987615, https://doi.org/10.1002/2015JC011223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X. Q., C. M. Dong, and Y. Q. Qi, 2017: The influence of ENSO on an oceanic eddy pair in the South China Sea. J. Geophys. Res. Oceans, 122, 16431652, https://doi.org/10.1002/2016JC012642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and S. Wijffels, 2002: Intraseasonal variability in the South Equatorial Current of the East Indian Ocean. J. Phys. Oceanogr., 32, 265277, https://doi.org/10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., N. N. Zhang, Q. Y. Liu, and S. Wijffels, 2018: The Indonesian throughflow, its variability and centennial change. Geosci. Lett., 5, 3, https://doi.org/10.1186/s40562-018-0102-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ffield, A., K. Vranes, A. L. Gordon, R. D. Susanto, and S. L. Garzoli, 2000: Temperature variability within Makassar Strait. Geophys. Res. Lett., 27, 237240, https://doi.org/10.1029/1999GL002377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and R. A. Fine, 1996: Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379, 146149, https://doi.org/10.1038/379146a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi, 2012: South China Sea throughflow impact on the Indonesian throughflow. Geophys. Res. Lett., 39, L11602, https://doi.org/10.1029/2012GL052021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and et al. , 2019: Makassar Strait throughflow seasonal and interannual variability: An overview. J. Geophys. Res. Oceans, 124, 37243736, https://doi.org/10.1029/2018JC014502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, https://doi.org/10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y. Y., T. D. Qu, T. Jensen, T. Miyama, H. Mitsudera, H. W. Kang, and A. Ishida, 2004: Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J. Geophys. Res., 109, C03040, https://doi.org/10.1029/2003JC002013.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and et al. , 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., S. Fournier, A. L. Gordon, and J. Sprintall, 2019: Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation (vol 10, 2103, 2019). Nat. Commun., 10, 2103, https://doi.org/10.1038/s41467-019-10109-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. L., W. Q. Han, A. X. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Climate, 31, 78637884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., R. X. Huang, D. X. Wang, Q. Xie, and Q. Z. Huang, 2006: Interplay between the Indonesian throughflow and the South China Sea throughflow. Chin. Sci. Bull., 51, 5058, https://doi.org/10.1007/s11434-006-9050-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q. Y., M. Feng, D. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian throughflow transport: A revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and T. Yamagata, 1991: Response of the western tropical Pacific to the Asian winter monsoon: The generation of the Mindanao Dome. J. Phys. Oceanogr., 21, 13861398, https://doi.org/10.1175/1520-0485(1991)021<1386:ROTWTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño Southern Oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., R. J. Bailey, and A. P. Worby, 1995: Geostrophic transport of Indonesian throughflow. Deep-Sea Res. I, 42, 11631174, https://doi.org/10.1016/0967-0637(95)00037-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., and Y. Masumoto, 2010: Interactions between mesoscale eddy variability and Indian Ocean dipole events in the Southeastern tropical Indian Ocean-case studies for 1994 and 1997/1998. Ocean Dyn., 60, 717730, https://doi.org/10.1007/s10236-010-0304-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogata, T., and Y. Masumoto, 2011: Interannual modulation and its dynamics of the mesoscale eddy variability in the southeastern tropical Indian Ocean. J. Geophys. Res., 116, C05005, https://doi.org/10.1029/2010JC006490.

    • Search Google Scholar
    • Export Citation
  • Peng, Q. H., S. P. Xie, D. X. Wang, X. T. Zheng, and H. Zhang, 2019: Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun., 10, 298, https://doi.org/10.1038/s41467-018-08258-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., S. L. Hautala, J. Sprintall, and W. Pandoe, 2002: Interaction between the Indonesian Seas and the Indian Ocean in observations and numerical models. J. Phys. Oceanogr., 32, 18381854, https://doi.org/10.1175/1520-0485(2002)032<1838:IBTISA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, https://doi.org/10.1029/95JC03204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., M. Mao, and Y. Kashino, 1999: Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian seas. J. Phys. Oceanogr., 29, 15991618, https://doi.org/10.1175/1520-0485(1999)029<1599:IVITIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and T. Yamagata, 2000: Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res., 105, 64156424, https://doi.org/10.1029/1999JC900323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., and R. Lukas, 2003: The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33, 518, https://doi.org/10.1175/1520-0485(2003)033<0005:TBOTNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 36443657, https://doi.org/10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadfasel, D., and G. R. Cresswell, 1992: A note on the seasonal variability of the South Java Current. J. Geophys. Res., 97, 36853688, https://doi.org/10.1029/91JC03056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. D. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647651, https://doi.org/10.1038/s41586-019-1764-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheremet, V. A., 2001: Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr., 31, 12471259, https://doi.org/10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L. N., Y. L. Li, F. Wang, J. N. Wang, and C. Y. Liu, 2018: Subsurface structure and variability of the zonal currents in the Northwestern Tropical Pacific Ocean. Deep-Sea Res. I, 141, 1123, https://doi.org/10.1016/j.dsr.2018.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, A. Koch-Larrouy, T. Lee, J. T. Potemra, K. Pujiana, and S. E. Wijffels, 2014: The Indonesian seas and their role in the coupled ocean-climate system. Nat. Geosci., 7, 487492, https://doi.org/10.1038/ngeo2188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., K. J. Heywood, S. Schmidtko, and A. L. Stewart, 2014: Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci., 7, 879884, https://doi.org/10.1038/ngeo2289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Kagimoto, Y. Masumoto, and T. Yamagata, 2002: Simulated multiscale variations in the western tropical Pacific: The Mindanao Dome revisited. J. Phys. Oceanogr., 32, 13381359, https://doi.org/10.1175/1520-0485(2002)032<1338:SMVITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. D. Qu, and T. Yamagata, 2007: Dramatic impact of the South China Sea on the Indonesian throughflow. Geophys. Res. Lett., 34, L12612, https://doi.org/10.1029/2007GL030420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Q. Han, 2012: Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: Remote versus local forcing. J. Phys. Oceanogr., 42, 602627, https://doi.org/10.1175/JPO-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. X., Q. Y. Liu, Y. Liu, and P. Shi, 2004: Connection between interannual variability of the western Pacific and eastern Indian Oceans in the 1997-1998 El Niño event. Prog. Nat. Sci., 14, 423429, https://doi.org/10.1080/10020070412331343721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. L. Yuan, 2014: Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. J. Phys. Oceanogr., 44, 18731885, https://doi.org/10.1175/JPO-D-13-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., and T. D. Qu, 2004: Seasonal variability of the large-scale currents near the coast of the Philippines. J. Phys. Oceanogr., 34, 844855, https://doi.org/10.1175/1520-0485(2004)034<0844:SVOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., and J. Potemra, 2006: Generation mechanism for the intraseasonal variability in the Indo-Australian basin. J. Geophys. Res., 111, C01013, https://doi.org/10.1029/2005JC003023.

    • Search Google Scholar
    • Export Citation
  • Yuan, D. L., and Z. Wang, 2011: Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies. J. Phys. Oceanogr., 41, 878888, https://doi.org/10.1175/2010JPO4489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D. L., W. Q. Han, and D. X. Hu, 2006: Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res., 111, C11007, https://doi.org/10.1029/2005JC003412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L. L., F. J. Wang, Q. Y. Wang, S. J. Hu, F. Wang, and D. X. Hu, 2017: Structure and variability of the North Equatorial Current/Undercurrent from mooring measurements at 130°E in the Western Pacific. Sci. Rep., 7, 46310, https://doi.org/10.1038/srep46310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. G., W. Wang, and B. Qiu, 2014: Oceanic mass transport by mesoscale eddies. Science, 345, 322324, https://doi.org/10.1126/science.1252418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, R. X., and X. H. Zhu, 2016: Weakest winter South China Sea western boundary current caused by the 2015-2016 El Niño event. J. Geophys. Res. Oceans, 121, 76737682, https://doi.org/10.1002/2016JC012252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and R. Murtugudde, 2020: Oceanic impacts on MJO detouring near the Maritime Continent. J. Climate, 33, 23712388, https://doi.org/10.1175/JCLI-D-19-0505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X. H., R. X. Zhao, X. Y. Guo, Y. Long, Y. L. Ma, and X. P. Fan, 2015: A long-term volume transport time series estimated by combining in situ observation and satellite altimeter data in the northern South China Sea. J. Oceanogr., 71, 663673, https://doi.org/10.1007/s10872-015-0305-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 290 290 56
Full Text Views 248 248 161
PDF Downloads 149 149 26

The Extreme El Niño Events Suppressing the Intraseasonal Variability in the Eastern Tropical Indian Ocean

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
  • | 3 School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
  • | 4 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • | 5 CSIRO Oceans and Atmosphere, Crawley, Western Australia, Australia
  • | 6 CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • | 7 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • | 8 Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 9 CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, China
  • | 10 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

In the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.

Corresponding authors: Dongxiao Wang, dxwang@scsio.ac.cn; Gengxin Chen, chengengxin@scsio.ac.cn

Abstract

In the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.

Corresponding authors: Dongxiao Wang, dxwang@scsio.ac.cn; Gengxin Chen, chengengxin@scsio.ac.cn
Save