• Alford, M. H., M. C. Gregg, and M. Ilyas, 1999: Diapycnal mixing in the Banda Sea: Results of the first microstructure measurements in the Indonesian throughflow. Geophys. Res. Lett., 26, 27412744, https://doi.org/10.1029/1999GL002337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. M. Klymak, and G. S. Carter, 2014: Breaking internal lee waves at Kaena Ridge, Hawaii. Geophys. Res. Lett., 41, 906912, https://doi.org/10.1002/2013GL059070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources, and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Baines, P. G., 1977: Upstream influence and Long’s model in stratified flows. J. Fluid Mech., 82, 147159, https://doi.org/10.1017/S0022112077000573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 482 pp.

  • Bevington, P. R., and D. K. Robinson, 1992: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, 328 pp.

  • Bryden, H. L., and A. J. G. Nurser, 2003: Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 18701872, https://doi.org/10.1175/1520-0485(2003)033<1870:EOSMOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open-channel Hydraulics. McGraw-Hill, 680 pp.

  • Cusack, J. M., G. Voet, M. H. Alford, J. B. Girton, G. S. Carter, L. J. Pratt, K. A. Pearson-Potts, and S. Tan, 2019: Persistent turbulence in the Samoan Passage. J. Phys. Oceanogr., 49, 31793197, https://doi.org/10.1175/JPO-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 1981: Hydrodynamic Instability. Cambridge University Press, 527 pp.

  • Farmer, D., and L. Armi, 1999: Stratified flow over topography: The role of small-scale entrainment and mixing in flow establishment. Proc. Roy. Soc. London, 455A, 32213258, https://doi.org/10.1098/rspa.1999.0448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ffield, A., and A. L. Gordon, 1992: Vertical mixing in the Indonesian thermocline. J. Phys. Oceanogr., 22, 184195, https://doi.org/10.1175/1520-0485(1992)022<0184:VMITIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ffield, A., and A. L. Gordon, 1996: Tidal mixing signatures in the Indonesian Seas. J. Phys. Oceanogr., 26, 19241937, https://doi.org/10.1175/1520-0485(1996)026<1924:TMSITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerdes, F., C. Garrett, and D. Farmer, 2002: On internal hydraulics with entrainment. J. Phys. Oceanogr., 32, 11061111, https://doi.org/10.1175/1520-0485(2002)032<1106:OIHWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1977: The hydraulics of rotating channel flow. J. Fluid Mech., 80, 641671, https://doi.org/10.1017/S0022112077002407.

  • Girton, J. B., and T. B. Sanford, 2003: Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanogr., 33, 13511364, https://doi.org/10.1175/1520-0485(2003)033<1351:DAMOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girton, J. B., L. J. Pratt, D. A. Sutherland, and J. F. Price, 2006: Is the Faroe Bank Channel overflow hydraulically controlled? J. Phys. Oceanogr., 36, 23402349, https://doi.org/10.1175/JPO2969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 2005: Oceanography of the Indonesian seas and their throughflow. Oceanography, 18, 1427, https://doi.org/10.5670/oceanog.2005.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 33253328, https://doi.org/10.1029/1999GL002340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and K. Vranes, 2003a: Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425, 824828, https://doi.org/10.1038/nature02038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., C. F. Giulivi, and A. G. Ilahude, 2003b: Deep topographic barriers within the Indonesian seas. Deep-Sea Res. II, 50, 22052228, https://doi.org/10.1016/S0967-0645(03)00053-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and et al. , 2010: The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128, https://doi.org/10.1016/j.dynatmoce.2009.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatayama, T., 2004: Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves. J. Oceanogr., 60, 569585, https://doi.org/10.1023/B:JOCE.0000038350.32155.cb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hautala, S., J. L. Reid, and N. A. Bray, 1996: The distribution and mixing of Pacific water masses in the Indonesian Seas. J. Geophys. Res., 101, 12 37512 389, https://doi.org/10.1029/96JC00037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. McC., K. B. Winters, and G. N. Ivey, 2001: Linear internal waves and the control of stratified exchange flows. J. Fluid Mech., 447, 357375, https://doi.org/10.1017/S0022112001006048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N., P. Biscaye, W. Gardner, and W. J. Schmitz, 1982: On the transport and modification of Antarctic bottom water in the Vema Channel. J. Mar. Res., 40, 231263.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, https://doi.org/10.1017/S0022112061000317.

  • Ijichi, T., and T. Hibiya, 2018: Observed variations in turbulent mixing efficiency in the deep ocean. J. Phys. Oceanogr., 48, 18151830, https://doi.org/10.1175/JPO-D-17-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., G. Madec, P. Bouruet-Aubertot, T. Gerkema, L. Bessières, and R. Molcard, 2007: On the transformation of Pacific water into Indonesian Throughflow Water by internal tidal mixing. Geophys. Res. Lett., 34, L04604, https://doi.org/10.1029/2006GL028405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., A. Atmadipoera, P. van Beek, G. Madec, J. Aucan, F. Lyard, J. Grelet, and M. Souhaut, 2015: Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep-Sea Res. I, 106, 136153, https://doi.org/10.1016/j.dsr.2015.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and et al. , 2020: Moored observations of transport and variability of Halmahera Sea currents. J. Phys. Oceanogr., 50, 471488, https://doi.org/10.1175/JPO-D-19-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. K. Venayagamoorthy, L. St. Laurent, and J. N. Moum, 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr., 45, 24972521, https://doi.org/10.1175/JPO-D-14-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, https://doi.org/10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Nagai, T., T. Hibiya, and P. Bouruet-Aubertot, 2017: Nonhydrostatic simulations of tide-induced mixing in the Halmahera Sea: A possible role in the transformation of the Indonesian Throughflow Waters. J. Geophys. Res. Oceans, 122, 89338943, https://doi.org/10.1002/2017JC013381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, M. H., L. Pratt, and K. Helfrich, 2004: Mixing and entrainment in hydraulically driven stratified sill flows. J. Fluid Mech., 515, 415443, https://doi.org/10.1017/S0022112004000576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1, 861871.

  • Pandey, V. K., V. Bhatt, A. C. Pandey, and I. M. L. Das, 2007: Impact of Indonesian throughflow blockage on the Southern Indian Ocean. Curr. Sci., 93, 399406.

    • Search Google Scholar
    • Export Citation
  • Pawlak, G., and L. Armi, 1997: Hydraulics of two-layer arrested wedge flows. J. Hydraul. Res., 35, 603618, https://doi.org/10.1080/00221689709498397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II. Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 14981529, https://doi.org/10.1175/1520-0469(1979)036<1498:TEASOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 1986: Hydraulic control of sill flow with bottom friction. J. Phys. Oceanogr., 16, 19701980, https://doi.org/10.1175/1520-0485(1986)016<1970:HCOSFW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and J. A. Whitehead, 2008: Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. Springer, 592 pp.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., H. E. Deese, S. P. Murray, and W. Johns, 2000: Continuous dynamical modes in straits having arbitrary cross sections, with applications to the Bab al Mandab. J. Phys. Oceanogr., 30, 25152534, https://doi.org/10.1175/1520-0485(2000)030<2515:CDMISH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., 1998: The Indonesian throughflow and the global climate system. J. Climate, 11, 676689, https://doi.org/10.1175/1520-0442(1998)011<0676:TITATG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Siddall, M., L. J. Pratt, K. R. Helfrich, and L. Giosan, 2004: Testing the physical oceanographic implications of the suggested sudden Black Sea infill 8400 years ago. Paleoceanography, 19, PA1024, https://doi.org/10.1029/2003PA000903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and J. Sun, 1987: Generalized hydraulic solutions pertaining to severe downslope winds. J. Atmos. Sci., 44, 29342939, https://doi.org/10.1175/1520-0469(1987)044<2934:GHSPTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, https://doi.org/10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and J. D. Nash, 2011: Narrowband oscillations in the upper equatorial ocean. Part II: Properties of shear instabilities. J. Phys. Oceanogr., 41, 412428, https://doi.org/10.1175/2010JPO4451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, https://doi.org/10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and J. Sprintall, 2005: Deep expression of the Indonesian Throughflow: Indonesian intermediate water in the South Equatorial Current. J. Geophys. Res., 110, C10009, https://doi.org/10.1029/2004JC002826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessler, Z. D., A. L. Gordon, L. J. Pratt, and J. Sprintall, 2010: Transport and dynamics of the Panay Sill overflow in the Philippine Seas. J. Phys. Oceanogr., 40, 26792695, https://doi.org/10.1175/2010JPO4395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, 286A, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., J. Punjanan, and S. Saimima, 1988: Physical aspects of the flushing of the East Indonesian basins. Neth. J. Sea Res., 22, 315339, https://doi.org/10.1016/0077-7579(88)90003-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., I. S. Brodjonegoro, and I. Jaya, 2009: The deep-water motion through the Lifamatola passage and its contribution to the Indonesian throughflow. Deep-Sea Res. I, 56, 12031216, https://doi.org/10.1016/j.dsr.2009.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., G. Flierl, R. Ferrari, G. Voet, G. S. Carter, M. H. Alford, and J. B. Girton, 2019: Squeeze dispersion and the effective diapycnal diffusivity of oceanic tracers. Geophys. Res. Lett., 46, 53785386, https://doi.org/10.1029/2019GL082458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., and E. K. Schneider, 2001: The Indonesian Throughflow’s effect on global climate determined from the COLA coupled climate system. J. Climate, 14, 30293042, https://doi.org/10.1175/1520-0442(2001)014<3029:TITSEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., and L. V. Worthington, 1982: The flux and mixing rates of Antarctic bottom water within the North Atlantic. J. Geophys. Res., 87, 79037924, https://doi.org/10.1029/JC087iC10p07903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical oceanography of the southeast Asian Waters. NAGA Rep. 2, Scripps Institution of Oceanography, 226 pp.

  • Yuan, D., and et al. , 2011: Forcing of the Indian ocean dipole on the interannual variations of the tropical pacific ocean: Roles of the Indonesian Throughflow. J. Climate, 24, 35933608, https://doi.org/10.1175/2011JCLI3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., H. Zhou, and X. Zhao, 2013: Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian Throughflow. J. Climate, 26, 28452861, https://doi.org/10.1175/JCLI-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 178 178 21
Full Text Views 88 88 11
PDF Downloads 96 96 9

Hydraulics and Mixing of the Deep Overflow in the Lifamatola Passage of the Indonesian Seas

View More View Less
  • 1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
  • | 2 Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • | 3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • | 4 University of Chinese Academy of Sciences, Beijing, China
  • | 5 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 6 Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
© Get Permissions
Restricted access

Abstract

Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.

Corresponding author: Dongliang Yuan, dyuan@qdio.ac.cn

Abstract

Hydrographic measurements recently acquired along the thalweg of the Lifamatola Passage combined with historical moored velocity measurements immediately downstream of the sill are used to study the hydraulics, transport, mixing, and entrainment in the dense overflow. The observations suggest that the mean overflow is nearly critical at the mooring site, suggesting that a weir formula may be appropriate for estimating the overflow transport. Our assessment suggests that the weir formulas corresponding to a rectangular, triangular, or parabolic cross section all result in transports very close to the observation, suggesting their potential usage in long-term monitoring of the overflow transport or parameterizing the transport in numerical models. Analyses also suggest that deep signals within the overflow layer are blocked by the shear flow from propagating upstream, whereas the shallow wave modes of the full-depth continuously stratified flow are able to propagate upstream from the Banda Sea into the Maluku Sea. Strong mixing is found immediately downstream of the sill crest, with Thorpe-scale-based estimates of the mean dissipation rate within the overflow up to 1.1 × 10−7 W kg−1 and the region-averaged diapycnal diffusivity within the downstream overflow in the range of 2.3 × 10−3 to 10.1 × 10−3 m2 s−1. Mixing in the Lifamatola Passage results in 0.6–1.2-Sv (1 Sv ≡ 106 m3 s−1) entrainment transport added to the overflow, enhancing the deep-water renewal in the Banda Sea. A bulk diffusivity coefficient estimated in the deep Banda Sea yields 1.6 × 10−3 ± 5 × 10−4 m2 s−1, with an associated downward turbulent heat flux of 9 W m−2.

Corresponding author: Dongliang Yuan, dyuan@qdio.ac.cn
Save