• Alford, M., J. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, https://doi.org/10.1029/2007GL031566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft, 2015: Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res. Oceans, 120, 60576071, https://doi.org/10.1002/2015JC010998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and et al. , 2018: Primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. New Frontiers in Operational Oceanography, E. P. Chassignet et al., Eds., GODAE OceanView, 307392.

    • Crossref
    • Export Citation
  • Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briscoe, M. G., 1977: Gaussianity of internal waves. J. Geophys. Res., 82, 21172126, https://doi.org/10.1029/JC082i015p02117.

  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, https://doi.org/10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., S. Chen, Z. Liu, J. Xu, J. Xie, Y. He, and S. Cai, 2019: Can tidal forcing alone generate a GM-like internal wave spectrum? Geophys. Res. Lett., 46, 14 64414 652, https://doi.org/10.1029/2019GL086338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Physical and Numerical Aspects. 2nd ed. Introduction to Geophysical Fluid Dynamics, Vol. 101. Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • Daru, V., and C. Tenaud, 2004: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys., 193, 563594, https://doi.org/10.1016/j.jcp.2003.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., M. Chouksey, and D. Olbers, 2019a: Mixed Rossby–gravity wave–wave interactions. J. Phys. Oceanogr., 49, 291308, https://doi.org/10.1175/JPO-D-18-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., F. Pollmann, and D. Olbers, 2019b: Numerical evaluation of energy transfers in internal gravity wave spectra of the ocean. J. Phys. Oceanogr., 49, 737749, https://doi.org/10.1175/JPO-D-18-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., F. Pollmann, and D. Olbers, 2020: Towards a global spectral energy budget for internal gravity waves in the ocean. J. Phys. Oceanogr., 50, 935944, https://doi.org/10.1175/JPO-D-19-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and D. Menemenlis, 2008: Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 319337, https://doi.org/10.1029/177GM19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furue, R., 2003: Energy transfer within the small-scale oceanic internal wave spectrum. J. Phys. Oceanogr., 33, 267282, https://doi.org/10.1175/1520-0485(2003)033<0267:ETWTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2005: Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35, 21042109, https://doi.org/10.1175/JPO2816.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359393, https://doi.org/10.1357/002224084788502756.

  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech., 12, 481500, https://doi.org/10.1017/S0022112062000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haubrich, R. A., 1965: Earth noise, 5 to 500 millicycles per second: 1. Spectral stationarity, normality, and nonlinearity. J. Geophys. Res., 70, 14151427, https://doi.org/10.1029/JZ070i006p01415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Y. Niwa, and K. Fujiwara, 1998: Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103, 18 71518 722, https://doi.org/10.1029/98JC01362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, https://doi.org/10.1029/2001JC001210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kartashova, E., 2007: Exact and quasiresonances in discrete water wave turbulence. Phys. Rev. Lett., 98, 214502, https://doi.org/10.1103/PhysRevLett.98.214502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, M. D., J. D. Irish, T. E. Ewart, and S. A. Reynolds, 1986: Simultaneous spatial and temporal measurements of the internal wave field during mate. J. Geophys. Res., 91, 97099719, https://doi.org/10.1029/JC091iC08p09709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., and E. G. Tabak, 2001: Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean. Phys. Rev. Lett., 87, 168501, https://doi.org/10.1103/PhysRevLett.87.168501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., and E. G. Tabak, 2004: A Hamiltonian formulation for long internal waves. Physica D, 195, 106122, https://doi.org/10.1016/j.physd.2004.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, and E. G. Tabak, 2004: Energy spectra of the ocean’s internal wave field: Theory and observations. Phys. Rev. Lett., 92, 128501, https://doi.org/10.1103/physrevlett.92.128501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, E. G. Tabak, and N. Yokoyama, 2010: Oceanic internal-wave field: Theory of scale-invariant spectra. J. Phys. Oceanogr., 40, 26052623, https://doi.org/10.1175/2010JPO4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, and N. Yokoyama, 2012: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr., 42, 669691, https://doi.org/10.1175/2011JPO4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and et al. , 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13971412, https://doi.org/10.1029/JC082i009p01397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and M. G. Briscoe, 1980: Bispectra of internal waves. J. Fluid Mech., 97, 205213, https://doi.org/10.1017/S0022112080002510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981a: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986, https://doi.org/10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981b: Time scales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 11, 139147, https://doi.org/10.1175/1520-0485(1981)011<0139:TSORIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. Kunze, R. B. Scott, A. J. Wallcraft, and L. Zamudio, 2015: Toward an internal gravity wave spectrum in global ocean models. Geophys. Res. Lett., 42, 34743481, https://doi.org/10.1002/2015GL063365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., D. Olbers, and J. Willebrand, 1978: The Iwex spectrum. J. Geophys. Res., 83, 479500, https://doi.org/10.1029/JC083iC01p00479.

  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, https://doi.org/10.1029/RG024i003p00493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarenko, S., 2011: Wave Turbulence. Lecture Notes in Physics, Vol. 825. Springer, 279 pp.

    • Crossref
    • Export Citation
  • Nelson, A. D., B. K. Arbic, D. Menemenlis, W. R. Peltier, N. Grisouard, and J. Klymak, 2020: Improved internal wave spectral continuum in a regional ocean model. J. Geophys. Res. Oceans, 125, e2019JC015974, https://doi.org/10.1029/2019JC015974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74, 375399, https://doi.org/10.1017/S0022112076001857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., F. Pollmann, and C. Eden, 2020: On PSI interactions in internal gravity wave fields and the decay of baroclinic tides. J. Phys. Oceanogr., 50, 751771, https://doi.org/10.1175/JPO-D-19-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onuki, Y., and T. Hibiya, 2018: Decay rates of internal tides estimated by an improved wave–wave interaction analysis. J. Phys. Oceanogr., 48, 26892701, https://doi.org/10.1175/JPO-D-17-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., and D. K. Yue, 2014: Direct numerical investigation of turbulence of capillary waves. Phys. Rev. Lett., 113, 094501, https://doi.org/10.1103/PhysRevLett.113.094501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelinovsky, E. N., and M. Raevsky, 1977: Weak turbulence of the internal waves of the ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 13, 187193.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, https://doi.org/10.1029/2010RG000329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. N. Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponce, M., and et al. , 2019: Deploying a top-100 supercomputer for large parallel workloads: The Niagara supercomputer. Proc. Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), Chicago, IL, ACM, 34, https://doi.org/10.1145/3332186.3332195.

    • Crossref
    • Export Citation
  • Riley, J. J., and M.-P. Lelong, 2000: Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech., 32, 613657, https://doi.org/10.1146/annurev.fluid.32.1.613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shriver, J., B. K. Arbic, J. Richman, R. Ray, E. Metzger, A. Wallcraft, and P. Timko, 2012: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117, C10024, https://doi.org/10.1029/2012JC008170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, https://doi.org/10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, Y., Y. Niwa, and T. Hibiya, 2009: Numerically reproduced internal wave spectra in the deep ocean. Geophys. Res. Lett., 36, L07601, https://doi.org/10.1029/2008GL036825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, O. M., and R. Pinkel, 2012: Energy transfer from high-shear, low-frequency internal waves to high-frequency waves near Kaena Ridge, Hawaii. J. Phys. Oceanogr., 42, 15241547, https://doi.org/10.1175/JPO-D-11-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thong, T., J. McNames, and M. Aboy, 2004: Lomb-Wech periodogram for non-uniform sampling. 26th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, IEEE, 271–274, https://doi.org/10.1109/IEMBS.2004.1403144.

    • Crossref
    • Export Citation
  • Voronovich, A. G., 1979: Hamiltonian formalism for internal waves in the ocean. Izv. Atmos. Ocean. Phys., 16, 5257.

  • Zakharov, V. E., and N. Filonenko, 1966: Energy spectrum for stochastic oscillations of the surface of a liquid. Dokl. Akad. Nauk SSSR, 170, 12921295.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., V. S. L’vov, and G. Falkovich, 1992: Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer, 275 pp.

  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 121 121 10
Full Text Views 51 51 7
PDF Downloads 64 64 8

Numerical Investigation of Mechanisms Underlying Oceanic Internal Gravity Wave Power-Law Spectra

View More View Less
  • 1 Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan
  • | 2 Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 4 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 5 Department of Naval Architecture and Ocean Engineering, Shanghai Jiaotong University, Shanghai, China
© Get Permissions
Restricted access

Abstract

We consider the power-law spectra of internal gravity waves in a rotating and stratified ocean. Field measurements have shown considerable variability of spectral slopes compared to the high-wavenumber, high-frequency portion of the Garrett–Munk (GM) spectrum. Theoretical explanations have been developed through wave turbulence theory (WTT), where different power-law solutions of the kinetic equation can be found depending on the mechanisms underlying the nonlinear interactions. Mathematically, these are reflected by the convergence properties of the so-called collision integral (CL) at low- and high-frequency limits. In this work, we study the mechanisms in the formation of the power-law spectra of internal gravity waves, utilizing numerical data from the high-resolution modeling of internal waves (HRMIW) in a region northwest of Hawaii. The model captures the power-law spectra in broad ranges of space and time scales, with scalings ω−2.05±0.2 in frequency and m−2.58±0.4 in vertical wavenumber. The latter clearly deviates from the GM76 spectrum but is closer to a family of induced-diffusion-dominated solutions predicted by WTT. Our analysis of nonlinear interactions is performed directly on these model outputs, which is fundamentally different from previous work assuming a GM76 spectrum. By applying a bicoherence analysis and evaluations of modal energy transfer, we show that the CL is dominated by nonlocal interactions between modes in the power-law range and low-frequency inertial motions. We further identify induced diffusion and the near-resonances at its spectral vicinity as dominating the formation of power-law spectrum.

Corresponding author: Yulin Pan, yulinpan@umich.edu

Abstract

We consider the power-law spectra of internal gravity waves in a rotating and stratified ocean. Field measurements have shown considerable variability of spectral slopes compared to the high-wavenumber, high-frequency portion of the Garrett–Munk (GM) spectrum. Theoretical explanations have been developed through wave turbulence theory (WTT), where different power-law solutions of the kinetic equation can be found depending on the mechanisms underlying the nonlinear interactions. Mathematically, these are reflected by the convergence properties of the so-called collision integral (CL) at low- and high-frequency limits. In this work, we study the mechanisms in the formation of the power-law spectra of internal gravity waves, utilizing numerical data from the high-resolution modeling of internal waves (HRMIW) in a region northwest of Hawaii. The model captures the power-law spectra in broad ranges of space and time scales, with scalings ω−2.05±0.2 in frequency and m−2.58±0.4 in vertical wavenumber. The latter clearly deviates from the GM76 spectrum but is closer to a family of induced-diffusion-dominated solutions predicted by WTT. Our analysis of nonlinear interactions is performed directly on these model outputs, which is fundamentally different from previous work assuming a GM76 spectrum. By applying a bicoherence analysis and evaluations of modal energy transfer, we show that the CL is dominated by nonlocal interactions between modes in the power-law range and low-frequency inertial motions. We further identify induced diffusion and the near-resonances at its spectral vicinity as dominating the formation of power-law spectrum.

Corresponding author: Yulin Pan, yulinpan@umich.edu
Save