Microstructure Mixing Observations and Finescale Parameterizations in the Beaufort Sea

Elizabeth C. Fine Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Elizabeth C. Fine in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. MacKinnon Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jennifer A. MacKinnon in
Current site
Google Scholar
PubMed
Close
, and
John B. Mickett Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by John B. Mickett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(1010) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Effie Fine, efine@whoi.edu

Abstract

In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(1010) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Effie Fine, efine@whoi.edu
Save
  • Aagaard, K., L. Coachman, and E. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res, 28A, 529545, https://doi.org/10.1016/0198-0149(81)90115-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed-layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 14241427, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, https://doi.org/10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. C. Gregg, 2001: Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res., 106, 16 94716 968, https://doi.org/10.1029/2000JC000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bebieva, Y., and M.-L. Timmermans, 2017: The relationship between double-diffusive intrusions and staircases in the Arctic Ocean. J. Phys. Oceanogr., 47, 867878, https://doi.org/10.1175/JPO-D-16-0265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, https://doi.org/10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanona, M., 2020: Spatial and temporal variability of internal wave-driven mixing in the Arctic Ocean. Ph.D. thesis, University of British Columbia, 120 pp., https://doi.org/10.14288/1.0389888.

    • Crossref
    • Export Citation
  • Chanona, M., and S. Waterman, 2020: Temporal variability of internal wave-driven mixing in two distinct regions of the Arctic Ocean. J. Geophys. Res. Oceans, 125, e2020JC016181, https://doi.org/10.1029/2020JC016181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanona, M., S. Waterman, and Y. Gratton, 2018: Variability of internal wave-driven mixing and stratification in Canadian Arctic shelf and shelf-slope waters. J. Geophys. Res. Oceans, 123, 91789195, https://doi.org/10.1029/2018JC014342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chinn, B. S., J. B. Girton, and M. H. Alford, 2016: The impact of observed variations in the shear-to-strain ratio of internal waves on inferred turbulent diffusivities. J. Phys. Oceanogr., 46, 32993320, https://doi.org/10.1175/JPO-D-15-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coachman, L., and C. Barnes, 1961: The contribution of Bering Sea water to the Arctic Ocean. Arctic, 14, 147161, https://doi.org/10.14430/arctic3670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., J. M. Toole, L. Rainville, and C. M. Lee, 2018: Internal waves in the Arctic: Influence of ice concentration, ice roughness, and surface layer stratification. J. Geophys. Res. Oceans, 123, 55715586, https://doi.org/10.1029/2018JC014096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosser, H. V., and L. Rainville, 2016: Dynamics of the changing near-inertial internal wave field in the Arctic Ocean. J. Phys. Oceanogr., 46, 395415, https://doi.org/10.1175/JPO-D-15-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Ocean. Sci. Lett., 2, 148152, https://doi.org/10.1080/16742834.2009.11446789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., 2014: Near-inertial mixing in the central Arctic Ocean. J. Phys. Oceanogr., 44, 20312049, https://doi.org/10.1175/JPO-D-13-0133.1.

  • Garrett, C., and W. Munk, 1972: Oceanic mixing by breaking internal waves. Deep-Sea Res., 19, 823832, https://doi.org/10.1016/0011-7471(72)90001-0.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ε and χT J. Atmos. Oceanic Technol., 16, 14831490, https://doi.org/10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica basin. J. Geophys. Res., 96, 16 70916 719, https://doi.org/10.1029/91JC01385.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. D’Asaro, J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/ANNUREV-MARINE-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans, 118, 39663977, https://doi.org/10.1002/jgrc.20294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., I. Fer, and J. Morison, 2015: Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res. Oceans, 120, 78807896, https://doi.org/10.1002/2015JC010884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., E. Carmack, F. McLaughlin, S. E. Allen, and R. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, https://doi.org/10.1029/2009JC005265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, https://doi.org/10.1175/2007JPO3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2003: A review of oceanic salt-fingering theory. Prog. Oceanogr., 56, 399417, https://doi.org/10.1016/S0079-6611(03)00027-2.

  • Kunze, E., 2017: Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. Hummon, T. K. Chereskin, and A. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparison with lower-latitude observations. J. Phys. Oceanogr., 15, 800809, https://doi.org/10.1175/1520-0485(1985)015<0800:IWITAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lincoln, B. J., T. P. Rippeth, Y.-D. Lenn, M. L. Timmermans, W. J. Williams, and S. Bacon, 2016: Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophys. Res. Lett., 43, 97499756, https://doi.org/10.1002/2016GL070454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lique, C., J. D. Guthrie, M. Steele, A. Proshutinsky, J. H. Morison, and R. Krishfield, 2014: Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments. J. Geophys. Res. Oceans, 119, 496508, https://doi.org/10.1002/2013JC009346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., M. Steele, and J. Zhang, 2014: Seasonality and long-term trend of Arctic Ocean surface stress in a model. J. Geophys. Res. Oceans, 119, 17231738, https://doi.org/10.1002/2013JC009425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., H. L. Simmons, C. A. Stoudt, and J. K. Hutchings, 2014: Near-inertial internal waves and sea ice in the Beaufort Sea. J. Phys. Oceanogr., 44, 22122234, https://doi.org/10.1175/JPO-D-13-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., and J. Stroeve, 1999: Near-real-time DMSP SSMIS daily polar gridded sea ice concentrations, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 16 December 2019, https://doi.org/10.5067/U8C09DWVX9LM.

    • Crossref
    • Export Citation
  • Morison, J. H., C. E. Long, and M. D. Levine, 1985: Internal wave dissipation under sea ice. J. Geophys. Res., 90, 11 95911 966, https://doi.org/10.1029/JC090IC06P11959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92, 10 79910 806, https://doi.org/10.1029/JC092iC10p10799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31, L02303, https://doi.org/10.1029/2003GL019003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., T. J. Weingartner, L. J. Pratt, S. Zimmermann, and D. J. Torres, 2005: Flow of winter-transformed Pacific water into the western Arctic. Deep-Sea Res. II, 52, 31753198, https://doi.org/10.1016/j.dsr2.2005.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2005: Near-inertial wave propagation in the western Artic. J. Phys. Oceanogr., 35, 645665, https://doi.org/10.1175/JPO2715.1.

  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 153175, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., E. Kunze, J. Hummon, and E. Firing, 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205224, https://doi.org/10.1175/1520-0426(2002)019<0205:TFROLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 expedition. Geophys. Res. Lett., 35 L08606, https://doi.org/10.1029/2008GL033532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Woodgate, 2009: Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36, L23604, https://doi.org/10.1029/2009GL041291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. P. Jones, U. Schauer, and P. Eriksson, 2004: Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res., 23, 181208, https://doi.org/10.1111/j.1751-8369.2004.tb00007.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W., T. Stanton, M. McPhee, J. Morison, and D. Martinson, 2009: Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. J. Geophys. Res., 114, C06012, https://doi.org/10.1029/2008JC004991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibley, N. C., M.-L. Timmermans, J. R. Carpenter, and J. M. Toole, 2017: Spatial variability of the Arctic Ocean’s double-diffusive staircase. J. Geophys. Res. Oceans, 122, 980994, https://doi.org/10.1002/2016JC012419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13431362, https://doi.org/10.1063/1.870386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., F. Ardhuin, and F. Girard-Ardhuin, 2016: Wave climate in the Arctic 1992-2014: Seasonality and trends. Cryosphere, 10, 16051629, https://doi.org/10.5194/tc-10-1605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, A. Proshutinsky, R. Krishfield, and A. Plueddemann, 2008: Eddies in the Canada basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38, 133145, https://doi.org/10.1175/2007JPO3782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and Coauthors, 2014: Mechanisms of Pacific summer water variability in the Arctic’s Central Canada basin. J. Geophys. Res. Oceans, 119, 75237548, https://doi.org/10.1002/2014JC010273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Marshall, A. Proshutinsky, and J. Scott, 2017: Seasonally derived components of the Canada basin halocline. Geophys. Res. Lett., 44, 50085015, https://doi.org/10.1002/2017GL073042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. M. Toole, and R. A. Krishfield, 2018: Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins. Sci. Adv., 4, 30167462, https://doi.org/10.1126/sciadv.aat6773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M.-L. Timmermans, D. K. Perovich, R. A. Krishfield, A. Proshutinsky, and J. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018, https://doi.org/10.1029/2009JC005660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, https://doi.org/10.1175/JPO-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188,https://doi.org/10.1175/JPO-D-14-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1997: Direct simulation of internal wave energy transfer. J. Phys. Oceanogr., 27, 19371945, https://doi.org/10.1175/1520-0485(1997)027<1937:DSOIWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 441 0 0
Full Text Views 2014 1194 360
PDF Downloads 801 141 9