• Aagaard, K., and P. Greisman, 1975: Towards new mass and heat budgets for the Arctic Ocean. J. Geophys. Res., 80, 38213827, https://doi.org/10.1029/JC080i027p03821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArcticNet, 2018: Amundsen Science Mooring Data Collection. Long-Term Ocean Observatory (LTOO) oceanographic mooring data collected in the Canadian Arctic Beaufort Sea. Accessed 28 August 2018, www.polardata.ca.

  • Armi, L., D. Hebert, N. Oakey, J. Price, P. L. Richardson, T. Rossby, and B. Ruddick, 1988: The history and decay of a Mediterranean salt lens. Nature, 333, 649651, https://doi.org/10.1038/333649a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrigo, K. R., and G. L. van Dijken, 2004: Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophys. Res. Lett., 31, L08304, https://doi.org/10.1029/2003GL018978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. A., and C. H. Gibson, 1987: Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. Phys. Oceanogr., 17, 18171836, https://doi.org/10.1175/1520-0485(1987)017<1817:STITSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, D., and L. Boegman, 2013: A diapycnal diffusivity model for stratified environmental flows. Dyn. Atmos. Oceans, 61-62, 1434, https://doi.org/10.1016/j.dynatmoce.2013.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, D., C. Hamel, F. Cyr, J. É. Tremblay, P. S. Galbraith, D. Dumont, and Y. Gratton, 2011: Turbulent nitrate fluxes in the Amundsen Gulf during ice-covered conditions. Geophys. Res. Lett., 38, L15602, https://doi.org/10.1029/2011GL047936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmack, E., and R. W. MacDonald, 2002: Oceanography of the Canadian shelf of the Beaufort Sea: A setting for marine life. Arctic, 55, 2945, https://doi.org/10.14430/arctic733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmack, E., R. W. MacDonald, and J. E. Papadakis, 1989: Water mass structure and boundaries in the Mackenzie shelf estuary. J. Geophys. Res., 94, 18 04318 055, https://doi.org/10.1029/JC094iC12p18043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmack, E., and et al. , 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Amer. Meteor. Soc., 96, 20792105, https://doi.org/10.1175/BAMS-D-13-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chanona, M., S. Waterman, and Y. Gratton, 2018: Variability of internal wave-driven mixing and stratification in Canadian Arctic shelf and shelf-slope waters. J. Geophys. Res. Oceans, 123, 91789195, https://doi.org/10.1029/2018JC014342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., J. M. Toole, L. Rainville, and C. M. Lee, 2018: Internal waves in the Arctic: Influence of ice concentration, ice roughness, and surface layer stratification. J. Geophys. Res. Oceans, 123, 55715586, https://doi.org/10.1029/2018JC014096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, D. L., and H. G. Gilchrist, 2002: Status of marine birds of the southeastern Beaufort Sea. Arctic, 55, 4658, https://doi.org/10.14430/arctic734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosser, H. V., L. Rainville, and J. M. Toole, 2014: Near-inertial internal wave field in the Canada Basin from ice-tethered profilers. J. Phys. Oceanogr., 44, 413426, https://doi.org/10.1175/JPO-D-13-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., W. G. Lee, and L. Magaard, 1984: Geographic and seasonal distributions of Brunt–Väisälä frequency and Rossby radii in the North Pacific and North Atlantic. J. Phys. Oceanogr., 14, 294317, https://doi.org/10.1175/1520-0485(1984)014<0294:GASDOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., A. K. Peterson, and J. E. Ullgren, 2014: Microstructure measurements from an underwater glider in the turbulent Faroe Bank Channel Overflow. J. Atmos. Oceanic Technol., 31, 11281150, https://doi.org/10.1175/JTECH-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, E. C., J. A. MacKinnon, M. H. Alford, and J. B. Mickett, 2018: Microstructure observations of turbulent heat fluxes in a warm-core Canada Basin eddy. J. Phys. Oceanogr., 48, 23972418, https://doi.org/10.1175/JPO-D-18-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., T. Osborn, and P. Nasmyth, 1984: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech., 144, 231280, https://doi.org/10.1017/S0022112084001592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grebmeier, J. M., and et al. , 2006: A major ecosystem shift in the northern Bering Sea. Science, 311, 14611464, https://doi.org/10.1126/science.1121365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1975: Microstructure and intrusions in the California Current. J. Phys. Oceanogr., 5, 253278, https://doi.org/10.1175/1520-0485(1975)005<0253:MAIITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 52495286, https://doi.org/10.1029/JC092iC05p05249.

  • Gregg, M. C., 1999: Uncertainties and limitations in measuring ε and χT. J. Atmos. Oceanic Technol., 16, 14831490, https://doi.org/10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., M. H. Alford, H. Kontoyiannis, V. Zervakis, and D. Winkel, 2012: Mixing over the steep side of the Cycladic Plateau in the Aegean Sea. J. Mar. Syst., 89, 3047, https://doi.org/10.1016/j.jmarsys.2011.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans, 118, 39663977, https://doi.org/10.1002/jgrc.20294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., I. Fer, and J. H. Morison, 2017: Thermohaline staircases in the Amundsen Basin: Possible disruption by shear and mixing. J. Geophys. Res. Oceans, 122, 77677782, https://doi.org/10.1002/2017JC012993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harwood, L. A., and I. Stirling, 1992: Distribution of ringed seals in the southeastern Beaufort Sea during late summer. Can. J. Zool., 70, 891900, https://doi.org/10.1139/z92-127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., K. B. Winters, and J. R. Koseff, 2008: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40, 169184, https://doi.org/10.1146/annurev.fluid.39.050905.110314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., E. C. Carmack, F. A. McLaughlin, S. E. Allen, and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993-2008. J. Geophys. Res., 115, C05021, https://doi.org/10.1029/2009JC005265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., and et al. , 2012: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, E. P., 2001: Circulation in the Arctic Ocean. Polar Res., 20, 139146, https://doi.org/10.1111/j.1751-8369.2001.tb00049.x.

  • Khon, V. C., I. I. Mokhov, M. Latif, V. A. Semenov, and W. Park, 2010: Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Climatic Change, 100, 757768, https://doi.org/10.1007/s10584-009-9683-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkwood, T. B. L., 1979: Geometric means and measures of dispersion. Biometrics, 35, 908909.

  • Kulikov, E. A., A. B. Rabinovich, and E. Carmack, 2004: Barotropic and baroclinic tidal currents on the Mackenzie shelf break in the southeastern Beaufort Sea. J. Geophys. Res., 109, C05020, https://doi.org/10.1029/2003JC001986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulikov, E. A., A. B. Rabinovich, and E. Carmack, 2010: Variability of baroclinic tidal currents on the Mackenzie Shelf, the southeastern Beaufort Sea. Cont. Shelf Res., 30, 656667, https://doi.org/10.1016/j.csr.2009.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lincoln, B. J., T. P. Rippeth, Y.-D. Lenn, M.-L. Timmermans, W. J. Williams, and S. Bacon, 2016: Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophys. Res. Lett., 43, 97499756, https://doi.org/10.1002/2016GL070454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., F. Wolk, and H. Yamazaki, 2002: Oceanic velocity microstructure measurements in the 20th century. J. Oceanogr., 58, 153174, https://doi.org/10.1023/A:1015837020019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merckelbach, L., A. Berger, G. Krahmann, M. Dengler, and J. R. Carpenter, 2019: A dynamic flight model for Slocum gliders and implications for turbulence microstructure measurements. J. Atmos. Oceanic Technol., 36, 281296, https://doi.org/10.1175/JTECH-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morozov, E., and S. V. Pisarev, 2002: Internal tides at the Arctic latitudes (numerical experiments). Oceanology, 42, 165173.

  • Niemi, A., J. Johnson, A. Majewski, H. Melling, J. Reist, and W. Williams, 2012: State of the ocean report for the Beaufort Sea Large Ocean Management Area. Canadian Manuscript Rep. of Fisheries and Aquatic Sciences Rep. 2977, 60 pp.

  • Ono, N., 1967: Specific heat and heat of fusion of sea ice. Phys. Snow Ice: Proc., 1, 599610.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92, 10 79910 806, https://doi.org/10.1029/JC092iC10p10799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. R., G. R. Stephenson, M. E. Inall, C. Balfour, A. Düsterhus, and J. A. M. Green, 2015: Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements. J. Mar. Syst., 144, 5769, https://doi.org/10.1016/j.jmarsys.2014.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, A. K., and I. Fer, 2014: Dissipation measurements using temperature microstructure from an underwater glider. Methods Oceanogr., 10, 4469, https://doi.org/10.1016/j.mio.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, I. K., S. J. Prinsenberg, and J. S. Holladay, 2008: Observations of sea ice thickness, surface roughness and ice motion in Amundsen Gulf. J. Geophys. Res., 113, C060164, https://doi.org/10.1029/2007JC004456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, E., and et al. , 2009: Ecological dynamics across the Arctic associated with recent climate change. Science, 325, 13551358, https://doi.org/10.1126/science.1173113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prowse, T. D., C. Furgal, R. Chouinard, H. Melling, D. Milburn, and S. L. Smith, 2009: Implications of climate change for economic development in northern Canada: Energy, resource, and transportation sectors. Ambio, 38, 272281, https://doi.org/10.1579/0044-7447-38.5.272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2013: Double-Diffusive Convection. Cambridge University Press, 342 pp.

    • Crossref
    • Export Citation
  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35, L08606, https://doi.org/10.1029/2008GL033532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., C. Lee, and R. Woodgate, 2011: Impact of wind-driven mixing in the Arctic Ocean. Oceanography, 24, 136145, https://doi.org/10.5670/oceanog.2011.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randelhoff, A., and J. D. Guthrie, 2016: Regional patterns in current and future export production in the central Arctic Ocean quantified from nitrate fluxes. Geophys. Res. Lett., 43, 86008608, https://doi.org/10.1002/2016GL070252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., B. J. Lincoln, Y.-D. Lenn, J. A. M. Green, A. Sundfjord, and S. Bacon, 2015: Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nat. Geosci., 8, 191194, https://doi.org/10.1038/ngeo2350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., V. Vlasenko, N. Stashchuk, B. D. Scannell, J. A. M. Green, B. J. Lincoln, and S. Bacon, 2017: Tidal conversion and mixing poleward of the critical latitude (an Arctic case study). Geophys. Res. Lett., 44, 12 34912 357, https://doi.org/10.1002/2017GL075310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol., 17, 15411555, https://doi.org/10.1175/1520-0426(2000)017<1541:MLSFTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheifele, B., S. Waterman, L. Merckelbach, and J. R. Carpenter, 2018: Measuring the dissipation rate of turbulent kinetic energy in strongly stratified, low-energy environments: A case study from the Arctic Ocean. J. Geophys. Res. Oceans, 123, 54595480, https://doi.org/10.1029/2017JC013731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultze, L. K. P., L. M. Merckelbach, and J. R. Carpenter, 2017: Turbulence and mixing in a shallow shelf sea from underwater gliders. J. Geophys. Res. Oceans, 122, 90929109, https://doi.org/10.1002/2017JC012872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévigny, C., Y. Gratton, and P. S. Galbraith, 2015: Frontal structures associated with coastal upwelling and ice-edge subduction events in southern Beaufort Sea during the Canadian Arctic Shelf Exchange Study. J. Geophys. Res. Oceans, 120, 25232539, https://doi.org/10.1002/2014JC010641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., and T. P. Stanton, 2014: Vertical diffusivity of the Western Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 50175038, https://doi.org/10.1002/2013JC009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., T. P. Stanton, M. G. McPhee, J. H. Morison, and D. G. Martinson, 2009: Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. J. Geophys. Res., 114, C06012, https://doi.org/10.1029/2008JC004991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibley, N. C., and M. L. Timmermans, 2019: The formation of double-diffusive layers in a weakly turbulent environment. J. Geophys. Res. Oceans, 124, 14451458, https://doi.org/10.1029/2018JC014625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibley, N. C., M. L. Timmermans, J. R. Carpenter, and J. M. Toole, 2017: Spatial variability of the Arctic Ocean’s double-diffusive staircase. J. Geophys. Res. Oceans, 122, 980994, https://doi.org/10.1002/2016JC012419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193214, https://doi.org/10.1017/S0022112004002587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E., 2012: Turbulent kinetic energy dissipation in Barrow Canyon. J. Phys. Oceanogr., 42, 10121021, https://doi.org/10.1175/JPO-D-11-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W., J. Nash, and J. Moum, 2005: Differential diffusion in breaking Kelvin-Helmholtz billows. J. Phys. Oceanogr., 35, 10041022, https://doi.org/10.1175/JPO2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stillinger, D. C., K. N. Helland, and C. W. Van Atta, 1983: Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech., 131, 91122, https://doi.org/10.1017/S0022112083001251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stirling, I., 1980: The biological importance of polynyas in the Canadian Arctic. Arctic, 33, 303315, https://doi.org/10.14430/arctic2563.

  • Stirling, I., 1997: The importance of polynyas, ice edges, and leads to marine mammals and birds. J. Mar. Syst., 10, 921, https://doi.org/10.1016/S0924-7963(96)00054-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timco, G., and R. Frederking, 1996: A review of sea ice density. Cold Reg. Sci. Technol., 24 (1), 16, https://doi.org/10.1016/0165-232X(95)00007-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008a: Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, https://doi.org/10.1029/2008JC004829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, A. Proshutinsky, R. Krishfield, and A. Plueddemann, 2008b: Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38, 133145, https://doi.org/10.1175/2007JPO3782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and et al. , 2014: Mechanisms of Pacific summer water variability in the Arctic’s central Canada Basin. J. Geophys. Res. Oceans, 119, 75237548, https://doi.org/10.1002/2014JC010273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, J.-E., L. G. Anderson, P. Matrai, P. Coupel, S. Belanger, C. Michel, and M. Reigsta, 2015: Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr., 139, 171196, https://doi.org/10.1016/j.pocean.2015.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 2010: The melting of ice in the Arctic Ocean: The influence of double-diffusive transport of heat from below. J. Phys. Oceanogr., 40, 249256, https://doi.org/10.1175/2009JPO4279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., and R. Pickart, 2012: Two configurations of the Western Arctic shelfbreak current in summer. J. Phys. Oceanogr., 42, 329351, https://doi.org/10.1175/JPO-D-11-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wassmann, P., 2011: Arctic marine ecosystems in an era of rapid climate change. Prog. Oceanogr., 90, 117, https://doi.org/10.1016/j.pocean.2011.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wassmann, P., 2015: Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean. Prog. Oceanogr., 139, 112, https://doi.org/10.1016/j.pocean.2015.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, W. J., and E. Carmack, 2008: Combined effect of wind-forcing and isobath divergence on upwelling at Cape Bathurst, Beaufort Sea. J. Mar. Res., 66, 645663, https://doi.org/10.1357/002224008787536808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, W. J., E. Carmack, K. Shimada, H. Melling, K. Aagaard, R. W. Macdonald, and R. G. Ingram, 2006: Joint effects of wind and ice motion in forcing upwelling in Mackenzie Trough, Beaufort Sea. Cont. Shelf Res., 26, 23522366, https://doi.org/10.1016/j.csr.2006.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüest, A., T. Sommer, M. Schmid, and J. R. Carpenter, 2012: Diffusive-type of double diffusion in lakes—A review. Environmental Fluid Mechanics: Memorial Volume in Honour of Prof. Gerhard H. Jirka, W. Rodi and M. Uhlmann, Eds., IAHR Monographs, CRC Press, 271–284, https://doi.org/10.1201/b12283.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 305 305 17
Full Text Views 109 109 3
PDF Downloads 145 145 3

Turbulence and Mixing in the Arctic Ocean’s Amundsen Gulf

View More View Less
  • 1 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
  • | 2 Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study uses CTD and microstructure measurements of shear and temperature from 348 glider profiles to characterize turbulence and turbulent mixing in the southeastern Beaufort Sea, where turbulence observations are presently scarce. We find that turbulence is typically weak: the turbulent kinetic energy dissipation rate ε has a median value (with 95% confidence intervals in parentheses) of 2.3 [2.2, 2.4] × 10−11 W kg−1 and is less than 1.0 × 10−10 W kg−1 in 68% of observations. Variability in ε spans five orders of magnitude, with indications that turbulence is bottom enhanced and modulated in time by the semidiurnal tide. Stratification is strong and frequently damps turbulence, inhibiting diapycnal mixing. Buoyancy Reynolds number estimates suggest that turbulent diapycnal mixing is unlikely in 93% of observations; however, a small number of strongly turbulent mixing events are disproportionately important in determining net buoyancy fluxes. The arithmetic mean diapycnal diffusivity of density is 4.5 [2.3, 14] × 10−6 m2 s−1, three orders of magnitude larger than that expected from molecular diffusion. Vertical heat fluxes are modest at O(0.1) W m−2, of the same order of magnitude as those in the Canada Basin double-diffusive staircase, however, staircases are generally not observed. Despite significant heat present in the Pacific Water layer in the form of a warm-core mesoscale eddy and smaller, O(1) km, temperature anomalies, turbulent mixing was found to be too low to release this heat to shallower depths.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Waterman, swaterman@eoas.ubc.ca

Abstract

This study uses CTD and microstructure measurements of shear and temperature from 348 glider profiles to characterize turbulence and turbulent mixing in the southeastern Beaufort Sea, where turbulence observations are presently scarce. We find that turbulence is typically weak: the turbulent kinetic energy dissipation rate ε has a median value (with 95% confidence intervals in parentheses) of 2.3 [2.2, 2.4] × 10−11 W kg−1 and is less than 1.0 × 10−10 W kg−1 in 68% of observations. Variability in ε spans five orders of magnitude, with indications that turbulence is bottom enhanced and modulated in time by the semidiurnal tide. Stratification is strong and frequently damps turbulence, inhibiting diapycnal mixing. Buoyancy Reynolds number estimates suggest that turbulent diapycnal mixing is unlikely in 93% of observations; however, a small number of strongly turbulent mixing events are disproportionately important in determining net buoyancy fluxes. The arithmetic mean diapycnal diffusivity of density is 4.5 [2.3, 14] × 10−6 m2 s−1, three orders of magnitude larger than that expected from molecular diffusion. Vertical heat fluxes are modest at O(0.1) W m−2, of the same order of magnitude as those in the Canada Basin double-diffusive staircase, however, staircases are generally not observed. Despite significant heat present in the Pacific Water layer in the form of a warm-core mesoscale eddy and smaller, O(1) km, temperature anomalies, turbulent mixing was found to be too low to release this heat to shallower depths.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Waterman, swaterman@eoas.ubc.ca
Save