The Equatorial Current System West of the Galápagos Islands during the 2014–16 El Niño as Observed by Underwater Gliders

Daniel L. Rudnick Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Daniel L. Rudnick in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2624-7074
,
W. Brechner Owens Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by W. Brechner Owens in
Current site
Google Scholar
PubMed
Close
,
T. M. Shaun Johnston Scripps Institution of Oceanography, La Jolla, California

Search for other papers by T. M. Shaun Johnston in
Current site
Google Scholar
PubMed
Close
,
Kristopher B. Karnauskas University of Colorado Boulder, Boulder, Colorado

Search for other papers by Kristopher B. Karnauskas in
Current site
Google Scholar
PubMed
Close
,
Julie Jakoboski Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Julie Jakoboski in
Current site
Google Scholar
PubMed
Close
, and
Robert E. Todd Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Robert E. Todd in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The strong El Niño of 2014–16 was observed west of the Galápagos Islands through sustained deployment of underwater gliders. Three years of observations began in October 2013 and ended in October 2016, with observations at longitudes 93° and 95°W between latitudes 2°N and 2°S. In total, there were over 3000 glider-days of data, covering over 50 000 km with over 12 000 profiles. Coverage was superior closer to the Galápagos on 93°W, where gliders were equipped with sensors to measure velocity as well as temperature, salinity, and pressure. The repeated glider transects are analyzed to produce highly resolved mean sections and maps of observed variables as functions of time, latitude, and depth. The mean sections reveal the structure of the Equatorial Undercurrent (EUC), the South Equatorial Current, and the equatorial front. The mean fields are used to calculate potential vorticity Q and Richardson number Ri. Gradients in the mean are strong enough to make the sign of Q opposite to that of planetary vorticity and to have Ri near unity, suggestive of mixing. Temporal variability is dominated by the 2014–16 El Niño, with the arrival of depressed isopycnals documented in 2014 and 2015. Increases in eastward velocity advect anomalously salty water and are uncorrelated with warm temperatures and deep isopycnals. Thus, vertical advection is important to changes in heat, and horizontal advection is relevant to changes in salt. Implications of this work include possibilities for future research, model assessment and improvement, and sustained observations across the equatorial Pacific.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel L. Rudnick, drudnick@ucsd.edu

Abstract

The strong El Niño of 2014–16 was observed west of the Galápagos Islands through sustained deployment of underwater gliders. Three years of observations began in October 2013 and ended in October 2016, with observations at longitudes 93° and 95°W between latitudes 2°N and 2°S. In total, there were over 3000 glider-days of data, covering over 50 000 km with over 12 000 profiles. Coverage was superior closer to the Galápagos on 93°W, where gliders were equipped with sensors to measure velocity as well as temperature, salinity, and pressure. The repeated glider transects are analyzed to produce highly resolved mean sections and maps of observed variables as functions of time, latitude, and depth. The mean sections reveal the structure of the Equatorial Undercurrent (EUC), the South Equatorial Current, and the equatorial front. The mean fields are used to calculate potential vorticity Q and Richardson number Ri. Gradients in the mean are strong enough to make the sign of Q opposite to that of planetary vorticity and to have Ri near unity, suggestive of mixing. Temporal variability is dominated by the 2014–16 El Niño, with the arrival of depressed isopycnals documented in 2014 and 2015. Increases in eastward velocity advect anomalously salty water and are uncorrelated with warm temperatures and deep isopycnals. Thus, vertical advection is important to changes in heat, and horizontal advection is relevant to changes in salt. Implications of this work include possibilities for future research, model assessment and improvement, and sustained observations across the equatorial Pacific.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel L. Rudnick, drudnick@ucsd.edu
Save
  • Abellán, E., S. McGregor, M. H. England, and A. Santoso, 2018: Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño. Climate Dyn., 51, 21912208, https://doi.org/10.1007/s00382-017-4007-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Argo, 2020: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, accessed 24 July 2018, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Bjerknes, J., 1966: A possible response of atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, https://doi.org/10.1111/j.2153-3490.1966.tb00303.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, C. Deser, and M. J. McPhaden, 2005: Anatomy and decadal evolution of the Pacific subtropical-tropical cells (STCs). J. Climate, 18, 37393758, https://doi.org/10.1175/JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/S41598-017-02926-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., W. S. Kessler, and J. T. Sherman, 2012: Gliders measure western boundary current transport from the South Pacific to the equator. J. Phys. Oceanogr., 42, 20012013, https://doi.org/10.1175/JPO-D-12-022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and A. Timmermann, 2004: The influence of the Galapagos Islands on tropical temperatures, currents and the generation of tropical instability waves. Geophys. Res. Lett., 31, L15308, https://doi.org/10.1029/2004GL020060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparin, F., and D. Roemmich, 2016: The strong freshwater anomaly during the onset of the 2015/2016 El Niño. Geophys. Res. Lett., 43, 64526460, https://doi.org/10.1002/2016GL069542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparin, F., and D. Roemmich, 2017: The seasonal march of the equatorial Pacific upper-ocean and its El Niño variability. Prog. Oceanogr., 156, 116, https://doi.org/10.1016/j.pocean.2017.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S. N., and A. V. Fedorov, 2017: The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett., 44, 38163824, https://doi.org/10.1002/2017GL072908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakoboski, J., R. E. Todd, W. B. Owens, K. B. Karnauskas, and D. L. Rudnick, 2020: Bifurcation and upwelling of the equatorial undercurrent west of the Galapagos archipelago. J. Phys. Oceanogr., 50, 887905, https://doi.org/10.1175/JPO-D-19-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605, https://doi.org/10.1175/JPO2870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and M. J. McPhaden, 1999: Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr., 29, 30733089, https://doi.org/10.1175/1520-0485(1999)029<3073:IPFFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52, 3161, https://doi.org/10.1016/S0079-6611(02)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M. A., and J. J. Obrien, 1990: The northeast Pacific Ocean response to the 1982–1983 El Niño. J. Geophys. Res., 95, 71557166, https://doi.org/10.1029/JC095iC05p07155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2007: The effect of the Galapagos Islands on the equatorial Pacific cold tongue. J. Phys. Oceanogr., 37, 12661281, https://doi.org/10.1175/JPO3048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2010: Observing the Galapagos–EUC interaction: Insights and challenges. J. Phys. Oceanogr., 40, 27682777, https://doi.org/10.1175/2010JPO4461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., G. C. Johnson, and R. Murtugudde, 2012: An equatorial ocean bottleneck in global climate models. J. Climate, 25, 343349, https://doi.org/10.1175/JCLI-D-11-00059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., S. Jenouvrier, C. W. Brown, and R. Murtugudde, 2015: Strong sea surface cooling in the eastern equatorial Pacific and implications for Galapagos penguin conservation. Geophys. Res. Lett., 42, 64326437, https://doi.org/10.1002/2015GL064456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., J. Jakoboski, T. M. S. Johnston, W. B. Owens, D. L. Rudnick, and R. E. Todd, 2020: The Pacific equatorial undercurrent in three generations of global climate models and glider observations. J. Geophys. Res. Oceans, 125, e2020JC016609, https://doi.org/10.1029/2020JC016609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., G. T. Mitchum, R. B. Lukas, and P. P. Niiler, 1999: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104, 23 31323 326, https://doi.org/10.1029/1999JC900197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 11791181, https://doi.org/10.1126/science.197.4309.1179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett., 43, 65036510, https://doi.org/10.1002/2016GL069204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R. C., D. R. Caldwell, M. C. Gregg, and J. N. Moum, 1995: Turbulence variability at the equator in the central Pacific at the beginning of the 1991–1993 El Niño. J. Geophys. Res., 100, 68816898, https://doi.org/10.1029/94JC03312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. Y., A. Kohl, Z. Y. Liu, F. Wang, and D. Stammer, 2016: Deep-reaching thermocline mixing in the equatorial pacific cold tongue. Nat. Commun., 7, 11576, https://doi.org/10.1038/NCOMMS11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., 1986: The termination of the equatorial undercurrent in the eastern Pacific. Prog. Oceanogr., 16, 6390, https://doi.org/10.1016/0079-6611(86)90007-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Firing, 1984: The geostrophic balance of the Pacific equatorial undercurrent. Deep-Sea Res., 31A, 6166, https://doi.org/10.1016/0198-0149(84)90072-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, R. J., and S. J. Bograd, 2002: Dynamic evolution of the 1997–1999 El Niño–La Niña cycle in the southern California Current System. Prog. Oceanogr., 54, 5975, https://doi.org/10.1016/S0079-6611(02)00043-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791795, https://doi.org/10.1038/nclimate2775.

  • McPhaden, M. J., A. J. Busalacchi, and D. L. T. Anderson, 2010: A TOGA retrospective. Oceanography, 23, 86103, https://doi.org/10.5670/oceanog.2010.26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. Hebert, C. A. Paulson, and D. R. Caldwell, 1992: Turbulence and internal waves at the equator. Part I: Statistics from towed thermistors and a microstructure profiler. J. Phys. Oceanogr., 22, 13301345, https://doi.org/10.1175/1520-0485(1992)022<1330:TAIWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R. C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, https://doi.org/10.1038/ngeo657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlin, A., and J. N. Moum, 2012: Comparison of thermal variance dissipation rates from moored and profiling instruments at the equator. J. Atmos. Oceanic Technol., 29, 13471362, https://doi.org/10.1175/JTECH-D-12-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., W. D. Smyth, S. Sarkar, and J. N. Moum, 2017: Seasonality of deep cycle turbulence in the eastern equatorial Pacific. J. Phys. Oceanogr., 47, 21892209, https://doi.org/10.1175/JPO-D-17-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riser, S. C., and Coauthors, 2016: Fifteen years of ocean observations with the global Argo array. Nat. Climate Change, 6, 145153, https://doi.org/10.1038/nclimate2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and G. N. Kiladis, 2006: Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 52535272, https://doi.org/10.1175/JCLI3893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2016: Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci., 8, 519541, https://doi.org/10.1146/annurev-marine-122414-033913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, https://doi.org/10.1029/2010JC006849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, https://doi.org/10.4031/002533204787522703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., K. D. Zaba, R. E. Todd, and R. E. Davis, 2017: A climatology of the California Current System from a network of underwater gliders. Prog. Oceanogr., 154, 64106, https://doi.org/10.1016/j.pocean.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., J. T. Sherman, and A. P. Wu, 2018: Depth-average velocity from Spray underwater gliders. J. Atmos. Oceanic Technol., 35, 16651673, https://doi.org/10.1175/JTECH-D-17-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., W. B. Owens, K. B. Karnauskas, and T. M. S. Johnston, 2020: Repeat observations by gliders in the equatorial region. Scripps Institution of Oceanography, Instrument Development Group, accessed 23 March 2020, https://doi.org/10.21238/S8SPRAY0090.

    • Crossref
    • Export Citation
  • Santoso, A., M. J. Mcphaden, and W. J. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., and Coauthors, 2019: Dynamics and predictability of El Niño–Southern Oscillation: An Australian perspective on progress and challenges. Bull. Amer. Meteor. Soc., 100, 403420, https://doi.org/10.1175/BAMS-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M. C., and D. L. Rudnick, 2017: Mindanao Current and Undercurrent: Thermohaline structure and transport from repeat glider observations. J. Phys. Oceanogr., 47, 20552075, https://doi.org/10.1175/JPO-D-16-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schönau, M. C., and Coauthors, 2019: The end of an El Niño: A view from Palau. Oceanography, 32, 3245, https://doi.org/10.5670/oceanog.2019.409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J., R. E. Davis, W. B. Owens, and J. Valdes, 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, https://doi.org/10.1109/48.972076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N., and Coauthors, 2019: Tropical Pacific observing system. Front. Mar. Sci., 6, 31, https://doi.org/10.3389/fmars.2019.00031.

  • Smyth, W. D., and J. N. Moum, 2002: Shear instability and gravity wave saturation in an asymmetrically stratified jet. Dyn. Atmos. Oceans, 35, 265294, https://doi.org/10.1016/S0377-0265(02)00013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2013: Marginal instability and deep cycle turbulence in the eastern equatorial Pacific Ocean. Geophys. Res. Lett., 40, 61816185, https://doi.org/10.1002/2013GL058403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, https://doi.org/10.1029/2010JC006536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, B. D. Cornuelle, and R. E. Davis, 2012: Thermohaline structure in the California Current System: Observations and modeling of spice variance. J. Geophys. Res., 117, C02008, https://doi.org/10.1029/2011JC007589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, J. T. Sherman, W. B. Owens, and L. George, 2017: Absolute velocity estimates from autonomous underwater gliders equipped with Doppler current profilers. J. Atmos. Oceanic Technol., 34, 309333, https://doi.org/10.1175/JTECH-D-16-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdy, A., B. D. Cornuelle, M. R. Mazloff, and D. L. Rudnick, 2017: Estimation of the tropical Pacific Ocean state 2010–2013. J. Atmos. Oceanic Technol., 34, 15011517, https://doi.org/10.1175/JTECH-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. L., and P. Muller, 2002: Effects of equatorial undercurrent shear on upper-ocean mixing and internal waves. J. Phys. Oceanogr., 32, 10411057, https://doi.org/10.1175/1520-0485(2002)032<1041:EOEUSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., and J. N. Moum, 2019: Feedback of mixing to ENSO phase change. Geophys. Res. Lett., 46, 13 92013 927, https://doi.org/10.1029/2019GL085415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic-response of equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaba, K. D., D. L. Rudnick, B. D. Cornuelle, G. Gopalakrishnan, and M. R. Mazloff, 2018: Annual and interannual variability in the California Current System: Comparison of an assimilating state estimate with a network of underwater gliders. J. Phys. Oceanogr., 48, 29652988, https://doi.org/10.1175/JPO-D-18-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaba, K. D., D. L. Rudnick, B. D. Cornuelle, G. Gopalakrishnan, and M. R. Mazloff, 2020: Volume and heat budgets in the coastal California Current System: Means, annual cycles and interannual anomalies of 2014–16. J. Phys. Oceanogr., 50, 14351453, https://doi.org/10.1175/JPO-D-19-0271.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and J. N. Moum, 2009: A new look at Richardson number mixing schemes for equatorial ocean modeling. J. Phys. Oceanogr., 39, 26522664, https://doi.org/10.1175/2009JPO4133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 562 0 0
Full Text Views 1687 814 37
PDF Downloads 797 106 13