• Adams, K. A., P. Hosegood, J. R. Taylor, J.-B. Sallée, S. Bachman, R. Torres, and M. Stamper, 2017: Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy. J. Phys. Oceanogr., 47, 17371753, https://doi.org/10.1175/JPO-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., D. A. Smeed, A. J. G. Nurser, J. W. Zhang, and M. Rixen, 2001: Diagnosis of vertical velocities with the QG omega equation: An examination of the errors due to sampling strategy. Deep-Sea Res. I, 48, 315346, https://doi.org/10.1016/S0967-0637(00)00035-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., and J. R. Taylor, 2016: Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing. J. Phys. Oceanogr., 46, 919935, https://doi.org/10.1175/JPO-D-15-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018a: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018b: Note on the rate of restratification in the baroclinic spindown of fronts. J. Phys. Oceanogr., 48, 15431553, https://doi.org/10.1175/JPO-D-17-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Oceanogr., 46, 33653384, https://doi.org/10.1175/JPO-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cloke, P., and M. J. P. Cullen, 1994: A semi-geostrophic ocean model with outcropping. Dyn. Atmos. Oceans, 21, 2348, https://doi.org/10.1016/0377-0265(94)90024-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and et al. , 2010: Monitoring ocean–atmosphere interactions in western boundary current extensions. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Vol. 2, J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publication WPP-306, European Space Agency, 199–209, https://doi.org/10.5270/OceanObs09.cwp.20.

    • Crossref
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P.-Y. Le Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106, 16 60316 622, https://doi.org/10.1029/2000JC000205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1949: The quasi-static equations of motion with pressure as independent variable. Geofys. Publ., 17, 144.

  • Estrada-Allis, S. N., B. Barceló-Llull, E. Pallàs-Sanz, A. Rodríguez-Santana, J. M. A. C. Souza, E. Mason, J. C. McWilliams, and P. Sangrà, 2019: Vertical velocity dynamics and mixing in an anticyclone near the canary islands. J. Phys. Oceanogr., 49, 431451, https://doi.org/10.1175/JPO-D-17-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, https://doi.org/10.1175/2007JPO3788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and et al. , 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and J. W. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc. London, 302A, 563581, https://doi.org/10.1098/rsta.1981.0183.

    • Search Google Scholar
    • Export Citation
  • Giordani, H., and S. Planton, 2000: Modeling and analysis of ageostrophic circulation over the Azores oceanic front during the SEMAPHORE experiment. Mon. Wea. Rev., 128, 22702287, https://doi.org/10.1175/1520-0493(2000)128<2270:MAAOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., L. Prieur, and G. Caniaux, 2006: Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn., 56, 513524, https://doi.org/10.1007/s10236-005-0050-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1975: The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci., 32, 233242, https://doi.org/10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and et al. , 2020: Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv., 6, eaba7880, https://doi.org/10.1126/sciadv.aba7880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., H. Xue, and H. Sasaki, 2019: Reconstructing the ocean interior from high-resolution sea surface information. J. Phys. Oceanogr., 49, 32453262, https://doi.org/10.1175/JPO-D-19-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, https://doi.org/10.1126/science.1218740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A. P., and K. J. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., L. A. Anderson, S. C. Doney, and M. E. Maltrud, 2003: Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1° resolution model of the North Atlantic. Global Biogeochem. Cycles, 17, 1035, https://doi.org/10.1029/2002GB001987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, https://doi.org/10.1175/2009JPO4186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukherjee, S., S. Ramachandran, A. Tandon, and A. Mahadevan, 2016: Production and destruction of eddy kinetic energy in forced submesoscale eddy-resolving simulations. Ocean Modell., 105, 4459, https://doi.org/10.1016/j.ocemod.2016.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, https://doi.org/10.1029/2005JC002964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., H. Leach, J. T. Allen, R. T. Pollard, and V. H. Strass, 2001: Mesoscale subduction at the Antarctic polar front driven by baroclinic instability. J. Phys. Oceanogr., 31, 20872107, https://doi.org/10.1175/1520-0485(2001)031<2087:MSATAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., and Á. Viúdez, 2005: Diagnosing mesoscale vertical motion from horizontal velocity and density data. J. Phys. Oceanogr., 35, 17441762, https://doi.org/10.1175/JPO2784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., T. M. S. Johnston, and D. L. Rudnick, 2010: Frontal dynamics in a California Current system shallow front: 2. Mesoscale vertical velocity. J. Geophys. Res., 115, C12068, https://doi.org/10.1029/2010JC006474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pidcock, R., A. Martin, J. Allen, S. C. Painter, and D. Smeed, 2013: The spatial variability of vertical velocity in an Iceland basin eddy dipole. Deep-Sea Res. I, 72, 121140, https://doi.org/10.1016/j.dsr.2012.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinot, J.-M., J. Tintoré, and D.-P. Wang, 1996: A study of the omega equation for diagnosing vertical motions at ocean fronts. J. Mar. Res., 54, 239259, https://doi.org/10.1357/0022240963213358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and L. A. Regier, 1992: Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22, 609625, https://doi.org/10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, B. P. Flannery, and W. T. Vetterling, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, 973 pp.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, C. Ubelmann, L.-L. Fu, and H. Sasaki, 2016: Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements. J. Phys. Oceanogr., 46, 947963, https://doi.org/10.1175/JPO-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Torres, J. Wang, L.-L. Fu, and D. Menemenlis, 2020: Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. J. Phys. Oceanogr., 50, 5579, https://doi.org/10.1175/JPO-D-19-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., A. Tandon, and A. Mahadevan, 2014: Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans, 119, 84958511, https://doi.org/10.1002/2014JC010211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. McC. Hogg, P. G. Strutton, A. E. Kiss, R. Matear, A. Klocker, and E. van Sebille, 2014: Vertical transport in the ocean due to sub-mesoscale structures: Impacts in the Kerguelen region. Ocean Modell., 80, 1023, https://doi.org/10.1016/j.ocemod.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2001: On the skewness of vorticity in the upper ocean. Geophys. Res. Lett., 28, 20452048, https://doi.org/10.1029/2000GL012265.

  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegelman, L., P. Klein, P. Rivière, A. F. Thompson, H. S. Torres, M. Flexas, and D. Menemenlis, 2020: Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci., 13, 5055, https://doi.org/10.1038/s41561-019-0489-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, https://doi.org/10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38, 25012518, https://doi.org/10.1175/2008JPO3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and T. M. Joyce, 2010: Subduction on the northern and southern flanks of the Gulf Stream. J. Phys. Oceanogr., 40, 429438, https://doi.org/10.1175/2009JPO4187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, https://doi.org/10.1029/177GM04.

    • Crossref
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from Gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260, https://doi.org/10.1175/2009JCLI2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L.-L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viglione, G. A., A. F. Thompson, M. M. Flexas, J. Sprintall, and S. Swart, 2018: Abrupt transitions in submesoscale structure in southern drake passage: Glider observations and model results. J. Phys. Oceanogr., 48, 20112027, https://doi.org/10.1175/JPO-D-17-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, Á., 2004: Potential vorticity and the quasigeostrophic and semigeostrophic mesoscale vertical velocity. J. Phys. Oceanogr., 34, 865887, https://doi.org/10.1175/1520-0485(2004)034<0865:PVATQA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., G. R. Flierl, J. H. LaCasce, J. L. McClean, and A. Mahadevan, 2013: Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr., 43, 16111626, https://doi.org/10.1175/JPO-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, https://doi.org/10.1175/2010JPO4477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., A. C. Naveira Garabato, A. P. Martin, C. E. Buckingham, L. Brannigan, and Z. Su, 2019: An annual cycle of submesoscale vertical flow and restratification in the upper ocean. J. Phys. Oceanogr., 49, 14391461, https://doi.org/10.1175/JPO-D-18-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and B. Qiu, 2018: Evolution of submesoscale ageostrophic motions through the life cycle of oceanic mesoscale eddies. Geophys. Res. Lett., 45, 11 84711 855, https://doi.org/10.1029/2018GL080399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. Qiu, P. Klein, and S. Travis, 2019: The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat. Commun., 10, 2838, https://doi.org/10.1038/s41467-019-10883-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., and A. Bracco, 2013: Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J. Geophys. Res. Oceans, 118, 56515668, https://doi.org/10.1002/jgrc.20402.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 468 468 67
Full Text Views 250 250 30
PDF Downloads 268 268 30

On the Upper-Ocean Vertical Eddy Heat Transport in the Kuroshio Extension. Part I: Variability and Dynamics

View More View Less
  • 1 Key Laboratory of Physical Oceanography and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
  • | 2 Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
  • | 3 International Laboratory for High-Resolution Earth System Prediction, Texas A&M University, College Station, Texas
  • | 4 Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 5 Department of Oceanography, Texas A&M University, College Station, Texas
  • | 6 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Oceanic eddies play a crucial role in transporting heat from the subsurface to surface ocean. However, dynamics responsible for the vertical eddy heat transport QT have not been systematically understood, especially in the mixed layer of western boundary current extensions characterized by the coincidence of strong eddy activities and air–sea interactions. In this paper, the winter (December–March) QT in the Kuroshio Extension is simulated using a 1-km regional ocean model. An omega equation based on the geostrophic momentum approximation and generalized to include the viscous and diabatic effects is derived and used to decompose the contribution of QT from different dynamics. The simulated QT exhibits a pronounced positive peak around the center of the mixed layer (~60 m). The value of QT there exhibits multi-time-scale variations with irregularly occurring extreme events superimposed on a slowly varying seasonal cycle. The proposed omega equation shows good skills in reproducing QT, capturing its spatial and temporal variations. Geostrophic deformation and vertical mixing of momentum are found to be the two major processes generating QT in the mixed layer with the former and the latter accounting for its seasonal variation and extreme events, respectively. The mixed layer instability and the net effect of frontogenesis/frontolysis contribute comparably to the geostrophic deformation induced QT. The contribution of QT from vertical mixing of momentum can be understood on the basis of turbulent thermal wind balance.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0068.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com

Abstract

Oceanic eddies play a crucial role in transporting heat from the subsurface to surface ocean. However, dynamics responsible for the vertical eddy heat transport QT have not been systematically understood, especially in the mixed layer of western boundary current extensions characterized by the coincidence of strong eddy activities and air–sea interactions. In this paper, the winter (December–March) QT in the Kuroshio Extension is simulated using a 1-km regional ocean model. An omega equation based on the geostrophic momentum approximation and generalized to include the viscous and diabatic effects is derived and used to decompose the contribution of QT from different dynamics. The simulated QT exhibits a pronounced positive peak around the center of the mixed layer (~60 m). The value of QT there exhibits multi-time-scale variations with irregularly occurring extreme events superimposed on a slowly varying seasonal cycle. The proposed omega equation shows good skills in reproducing QT, capturing its spatial and temporal variations. Geostrophic deformation and vertical mixing of momentum are found to be the two major processes generating QT in the mixed layer with the former and the latter accounting for its seasonal variation and extreme events, respectively. The mixed layer instability and the net effect of frontogenesis/frontolysis contribute comparably to the geostrophic deformation induced QT. The contribution of QT from vertical mixing of momentum can be understood on the basis of turbulent thermal wind balance.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0068.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com

Supplementary Materials

    • Supplemental Materials (PDF 288 KB)
Save