Nordic Seas Hydrography in the Context of Arctic and North Atlantic Ocean Dynamics

J. S. Kenigson Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Search for other papers by J. S. Kenigson in
Current site
Google Scholar
PubMed
Close
and
M.-L. Timmermans Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Search for other papers by M.-L. Timmermans in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of two years with anomalous NAO conditions illustrate how North Atlantic Ocean dynamics relate to the position of the SAF (as indicated by hydrographic properties and stratification changes in the upper water column), and therefore to the properties of the Atlantic inflow and Nordic seas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0071.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jessica Sarah Kenigson, jessica.kenigson@colorado.edu

Abstract

The hydrography of the Nordic seas, a critical site for deep convective mixing, is controlled by various processes. On one hand, Arctic Ocean exports are thought to freshen the North Atlantic Ocean and the Nordic seas, as in the Great Salinity Anomalies (GSAs) of the 1970s–1990s. On the other hand, the salinity of the Nordic seas covaries with that of the Atlantic inflow across the Greenland–Scotland Ridge, leaving an uncertain role for Arctic Ocean exports. In this study, multidecadal time series (1950–2018) of the Nordic seas hydrography, Subarctic Front (SAF) in the North Atlantic Ocean [separating the water masses of the relatively cool, fresh Subpolar Gyre (SPG) from the warm, saline Subtropical Gyre (STG)], and atmospheric forcing are examined and suggest a unified view. The Nordic seas freshwater content is shown to covary on decadal time scales with the position of the SAF. When the SPG is strong, the SAF shifts eastward of its mean position, increasing the contribution of subpolar relative to subtropical source water to the Atlantic inflow, and vice versa. This suggests that Arctic Ocean fluxes primarily influence the hydrography of the Nordic seas via indirect means (i.e., by freshening the SPG). Case studies of two years with anomalous NAO conditions illustrate how North Atlantic Ocean dynamics relate to the position of the SAF (as indicated by hydrographic properties and stratification changes in the upper water column), and therefore to the properties of the Atlantic inflow and Nordic seas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0071.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jessica Sarah Kenigson, jessica.kenigson@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 420 KB)
Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 48514 498, https://doi.org/10.1029/JC094iC10p14485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Årthun, M., T. Eldevik, L. Smedsrud, Ø. Skagseth, and R. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., 2004: Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys. Res. Lett., 31, L08306, https://doi.org/10.1029/2003GL019334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., and S. Levitus, 1996: Temporal variability of the subarctic front near the Charlie-Gibbs fracture zone. J. Geophys. Res., 101, 28 31728 324, https://doi.org/10.1029/96JC02794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S.-A. Malmberg, 1998: “Great Salinity Anomalies” in the North Atlantic. Prog. Oceanogr., 41, 168, https://doi.org/10.1016/S0079-6611(98)00015-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bersch, M., I. Yashayaev, and K. P. Koltermann, 2007: Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn., 57, 223235, https://doi.org/10.1007/s10236-007-0104-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berx, B., and M. Payne, 2017: The Sub-Polar Gyre Index-A community data set for application in fisheries and environment research. Earth Syst. Sci. Data, 9, 259266, https://doi.org/10.5194/essd-9-259-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., 2007: The alpha/beta ocean distinction: A perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep-Sea Res. II, 54, 25782598, https://doi.org/10.1016/j.dsr2.2007.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chafik, L., and T. Rossby, 2019: Volume, heat, and freshwater divergences in the subpolar North Atlantic suggest the Nordic Seas as key to the state of the meridional overturning circulation. Geophys. Res. Lett., 46, 47994808, https://doi.org/10.1029/2019GL082110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, B., C. Lee, B. Petrie, R. Moritz, and R. Kwok, 2014: Multiyear volume, liquid freshwater, and sea ice transports through Davis Strait, 2004–10. J. Phys. Oceanogr., 44, 12441266, https://doi.org/10.1175/JPO-D-13-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, R., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308, 17721774, https://doi.org/10.1126/science.1109477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Steur, L., E. Hansen, R. Gerdes, M. Karcher, E. Fahrbach, and J. Holfort, 2009: Freshwater fluxes in the east Greenland current: A decade of observations. Geophys. Res. Lett., 36, L23611, https://doi.org/10.1029/2009GL041278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Steur, L., R. S. Pickart, A. Macrander, K. Våge, B. Harden, S. Jónsson, S. Østerhus, and H. Valdimarsson, 2017: Liquid freshwater transport estimates from the East Greenland Current based on continuous measurements north of Denmark Strait. J. Geophys. Res. Oceans, 122, 93109, https://doi.org/10.1002/2016JC012106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Steur, L., C. Peralta-Ferriz, and O. Pavlova, 2018: Freshwater export in the East Greenland current freshens the North Atlantic. Geophys. Res. Lett., 45, 13 35913 366, https://doi.org/10.1029/2018GL080207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Meincke, S.-A. Malmberg, and A. J. Lee, 1988: The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20, 103151, https://doi.org/10.1016/0079-6611(88)90049-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., M. A. Johnson, and A. Proshutinsky, 2004: Arctic decadal variability: An auto-oscillatory system of heat and fresh water exchange. Geophys. Res. Lett., 31, L03302, https://doi.org/10.1029/2003GL019023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., M. A. Johnson, and A. Proshutinsky, 2006a: Arctic decadal variability from an idealized atmosphere-ice-ocean model: 1. Model description, calibration, and validation. J. Geophys. Res., 111, C06028, https://doi.org/10.1029/2004JC002821.

    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., M. A. Johnson, and A. Proshutinsky, 2006b: Arctic decadal variability from an idealized atmosphere-ice-ocean model: 2. Simulation of decadal oscillations. J. Geophys. Res., 111, C06029, https://doi.org/10.1029/2004JC002820.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Florindo-López, C., S. Bacon, Y. Aksenov, L. Chafik, E. Colbourne, and N. P. Holliday, 2020: Arctic Ocean and Hudson Bay freshwater exports: New estimates from seven decades of hydrographic surveys on the Labrador Shelf. J. Climate, 33, 88498868, https://doi.org/10.1175/JCLI-D-19-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foukal, N. P., and M. S. Lozier, 2017: Assessing variability in the size and strength of the North Atlantic subpolar gyre. J. Geophys. Res. Oceans, 122, 62956308, https://doi.org/10.1002/2017JC012798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giles, K. A., S. W. Laxon, A. L. Ridout, D. J. Wingham, and S. Bacon, 2012: Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci., 5, 194197, https://doi.org/10.1038/ngeo1379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glessmer, M. S., T. Eldevik, K. Våge, J. E. Ø. Nilsen, and E. Behrens, 2014: Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas. Nat. Geosci., 7, 801805, https://doi.org/10.1038/ngeo2259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, https://doi.org/10.1016/j.dsr.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, Z. L. Jacobs, R. Marsh, B. Sinha, and E. Van Sebille, 2016: Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy. Climate Dyn., 46, 40274045, https://doi.org/10.1007/s00382-015-2819-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and Coauthors, 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global Planet. Change, 125, 1335, https://doi.org/10.1016/j.gloplacha.2014.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559, https://doi.org/10.1126/science.1094917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res., 116, C03006, https://doi.org/10.1029/2010JC006275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, B., and S. Østerhus, 2000: North Atlantic-Nordic Seas exchanges. Prog. Oceanogr., 45, 109208, https://doi.org/10.1016/S0079-6611(99)00052-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hátún, H., and L. Chafik, 2018: On the recent ambiguity of the North Atlantic subpolar gyre index. J. Geophys. Res. Oceans, 123, 50725076, https://doi.org/10.1029/2018JC014101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hátún, H., A. B. Sandø, H. Drange, B. Hansen, and H. Valdimarsson, 2005: Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309, 18411844, https://doi.org/10.1126/science.1114777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbaut, C., and M.-N. Houssais, 2009: Response of the eastern North Atlantic subpolar gyre to the North Atlantic oscillation. Geophys. Res. Lett., 36, L17607, https://doi.org/10.1029/2009GL039090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., and Coauthors, 2020: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., J. J.-M. Hirschi, B. Sinha, A. Duchez, J. P. Grist, and R. Marsh, 2018: The recent Atlantic cold anomaly: Causes, consequences, and related phenomena. Annu. Rev. Mar. Sci., 10, 475501, https://doi.org/10.1146/annurev-marine-121916-063102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karcher, M., R. Gerdes, F. Kauker, C. Köberle, and I. Yashayaev, 2005: Arctic Ocean change heralds North Atlantic freshening. Geophys. Res. Lett., 32, L21606, https://doi.org/10.1029/2005GL023861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latarius, K., and D. Quadfasel, 2016: Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets. Deep-Sea Res. I, 114, 2342, https://doi.org/10.1016/j.dsr.2016.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauvset, S. K., A. Brakstad, K. Våge, A. Olsen, E. Jeansson, and K. A. Mork, 2018: Continued warming, salinification and oxygenation of the Greenland Sea gyre. Tellus, 70A, 19, https://doi.org/10.1080/16000870.2018.1476434.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and N. M. Stewart, 2008: On the temporally varying northward penetration of Mediterranean Overflow Water and eastward penetration of Labrador Sea Water. J. Phys. Oceanogr., 38, 20972103, https://doi.org/10.1175/2008JPO3908.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG 127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • Mork, K. A., Ø. Skagseth, and H. Søiland, 2019: Recent warming and freshening of the Norwegian Sea observed by Argo data. J. Climate, 32, 36953705, https://doi.org/10.1175/JCLI-D-18-0591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsen, J. E. Ø., and E. Falck, 2006: Variations of mixed layer properties in the Norwegian Sea for the period 1948–1999. Prog. Oceanogr., 70, 5890, https://doi.org/10.1016/j.pocean.2006.03.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Núñez-Riboni, I., M. Bersch, H. Haak, and J. Jungclaus, 2012: A multi-decadal meridional displacement of the Subpolar Front in the Newfoundland Basin. Ocean Sci., 8, 91102, https://doi.org/10.5194/os-8-91-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh, and K. Aagaard, 2006: Trajectory shifts in the Arctic and subarctic freshwater cycle. Science, 313, 10611066, https://doi.org/10.1126/science.1122593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., R. Bourke, and F. McLaughlin, 2002: The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys. Res. Lett., 29, 2100, https://doi.org/10.1029/2002GL015847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, https://doi.org/10.1029/2008JC005104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., D. Dukhovskoy, M.-L. Timmermans, R. Krishfield, and J. L. Bamber, 2015: Arctic circulation regimes. Philos. Trans. Roy. Soc., 373A, 20140160, https://doi.org/10.1098/rsta.2014.0160.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., R. Krishfield, and M.-L. Timmermans, 2019a: Preface to special issue Forum for Arctic Ocean Modeling and Observational Synthesis (FAMOS) 2: Beaufort Gyre phenomenon. J. Geophys. Res. Oceans, 125, e2019JC015400, https://doi.org/10.1029/2019JC015400.

    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2019b: Analysis of the Beaufort Gyre freshwater content in 2003-2018. J. Geophys. Res. Oceans, 124, 96589689, https://doi.org/10.1029/2019JC015281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reverdin, G., 2014: Oceanography: Freshened from the south. Nat. Geosci., 7, 783784, https://doi.org/10.1038/ngeo2268.

  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roden, G. I., 1991: Subarctic-subtropical transition zone of the North Pacific: Large-scale aspects and mesoscale structure. Biology, oceanography, and fisheries of the North Pacific transition zone and subarctic frontal zone, J. A. Wetherall, Ed., NOAA Tech. Rep. NMFS 105, 1–38, https://repository.library.noaa.gov/view/noaa/6054.

  • Sarafanov, A., 2009: On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters. ICES J. Mar. Sci., 66, 14481454, https://doi.org/10.1093/icesjms/fsp094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarafanov, A., A. Falina, A. Sokov, and A. Demidov, 2008: Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J. Geophys. Res., 113, C12022, https://doi.org/10.1029/2008JC004975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauer, U., and M. Losch, 2019: “Freshwater” in the ocean is not a useful parameter in climate research. J. Phys. Oceanogr., 49, 23092321, https://doi.org/10.1175/JPO-D-19-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., and T. W. Haine, 2016: Thermobaricity in the transition zones between alpha and beta oceans. J. Phys. Oceanogr., 46, 18051821, https://doi.org/10.1175/JPO-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taburet, G., A. Sanchez-Roman, M. Ballarotta, M.-I. Pujol, J.-F. Legeais, F. Fournier, Y. Faugere, and G. Dibarboure, 2019: DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci., 15, 12071224, https://doi.org/10.5194/os-15-1207-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and G. Krahmann, 2003: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113–145.

    • Crossref
    • Export Citation
  • Zhong, W., M. Steele, J. Zhang, and S. T. Cole, 2019: Circulation of Pacific winter water in the western Arctic Ocean. J. Geophys. Res. Oceans, 124, 863881, https://doi.org/10.1029/2018JC014604.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 443 0 0
Full Text Views 632 158 13
PDF Downloads 576 100 8