Submesoscale Fronts and Their Dynamical Processes Associated with Symmetric Instability in the Northwest Pacific Subtropical Ocean

Zhiyou Jing State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Zhiyou Jing in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4251-562X
,
Baylor Fox-Kemper Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
,
Haijin Cao College of Oceanography, Hohai University, Nanjing, China

Search for other papers by Haijin Cao in
Current site
Google Scholar
PubMed
Close
,
Ruixi Zheng State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Ruixi Zheng in
Current site
Google Scholar
PubMed
Close
, and
Yan Du State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Search for other papers by Yan Du in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Submesoscale density fronts and the associated processes of frontogenesis and symmetric instability (SI) are investigated in the northwest Pacific subtropical countercurrent (STCC) system by a high-resolution simulation and diagnostic analysis. Both satellite observations and realistic simulation show active surface fronts with a horizontal scale of ~20 km in the STCC upper ocean. Frontogenesis-induced buoyancy advection is detected to rapidly sharpen these density fronts. The direct straining effect of larger-scale geostrophic flows is a primary influence on the buoyancy-gradient frontogenetic tendency and frontal baroclinic potential vorticity (PV) enhancement. The enhanced lateral buoyancy gradients in conjunction with atmospheric forced surface buoyancy loss can produce a negative Ertel PV and trigger frontal SI in the STCC region. Up to 30% of the mixed layer (ML) inside a typical eddy has negative PV in the high-resolution simulation. As a result, the cross-front ageostrophic secondary circulations tend to restratify the surface boundary layer and induce a large vertical velocity reaching ~100 m day−1, substantially facilitating the vertical communication of the STCC system. At the same time, the SI is identified to be responsible for a forward cascade of geostrophic kinetic energy in the STCC region, despite the coexistence of ML eddies and SI in the deep winter ML. Therefore, these active density fronts and their SI-associated submesoscale processes play important roles in the enhanced vertical exchanges (e.g., heat, nutrients, and carbon) and energy transfer to smaller scales in the eddy-active STCC upper ocean, as well as triggering phytoplankton blooms at the periphery of eddies.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyou Jing, jingzhiyou@scsio.ac.cn

Abstract

Submesoscale density fronts and the associated processes of frontogenesis and symmetric instability (SI) are investigated in the northwest Pacific subtropical countercurrent (STCC) system by a high-resolution simulation and diagnostic analysis. Both satellite observations and realistic simulation show active surface fronts with a horizontal scale of ~20 km in the STCC upper ocean. Frontogenesis-induced buoyancy advection is detected to rapidly sharpen these density fronts. The direct straining effect of larger-scale geostrophic flows is a primary influence on the buoyancy-gradient frontogenetic tendency and frontal baroclinic potential vorticity (PV) enhancement. The enhanced lateral buoyancy gradients in conjunction with atmospheric forced surface buoyancy loss can produce a negative Ertel PV and trigger frontal SI in the STCC region. Up to 30% of the mixed layer (ML) inside a typical eddy has negative PV in the high-resolution simulation. As a result, the cross-front ageostrophic secondary circulations tend to restratify the surface boundary layer and induce a large vertical velocity reaching ~100 m day−1, substantially facilitating the vertical communication of the STCC system. At the same time, the SI is identified to be responsible for a forward cascade of geostrophic kinetic energy in the STCC region, despite the coexistence of ML eddies and SI in the deep winter ML. Therefore, these active density fronts and their SI-associated submesoscale processes play important roles in the enhanced vertical exchanges (e.g., heat, nutrients, and carbon) and energy transfer to smaller scales in the eddy-active STCC upper ocean, as well as triggering phytoplankton blooms at the periphery of eddies.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyou Jing, jingzhiyou@scsio.ac.cn
Save
  • Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, https://doi.org/10.1175/JPO-D-11-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., and J. R. Taylor, 2014: Modelling of partially-resolved oceanic symmetric instability. Ocean Modell., 82, 1527, https://doi.org/10.1016/j.ocemod.2014.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Fluid Mech., 6, 363380, https://doi.org/10.1016/0924-7963(94)00034-9.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. B. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability - A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, https://doi.org/10.1002/qj.49710544615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., and L. N. Thomas, 2012: Friction and diapycnal mixing at a slope: Boundary control of potential vorticity. J. Phys. Oceanogr., 42, 15091523, https://doi.org/10.1175/JPO-D-11-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodner, A. S., and B. Fox-Kemper, 2020: A breakdown in potential vorticity estimation delineates the submesoscale-to-turbulence boundary in large eddy simulations. J. Adv. Model. Earth Sys., 12, e2020MS002049, https://doi.org/10.1029/2020MS002049.

    • Search Google Scholar
    • Export Citation
  • Brannigan, L., 2016: Intense submesoscale upwelling in anticyclonic eddies. Geophys. Res. Lett., 43, 33603369, https://doi.org/10.1002/2016GL067926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave-vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y. L., and L. Y. Oey, 2014: Instability of the North Pacific subtropical countercurrent. J. Phys. Oceanogr., 44, 818833, https://doi.org/10.1175/JPO-D-13-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherian, D. A., and K. H. Brink, 2018: Shelf flows forced by deep-ocean anticyclonic eddies at the shelf break. J. Phys. Oceanogr., 48, 11171138, https://doi.org/10.1175/JPO-D-17-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020a: The size of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 26492667, https://doi.org/10.1175/JPO-D-20-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020b: The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett., 47, e2020GL087388, https://doi.org/10.1029/2020GL087388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid. Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, https://doi.org/10.1175/2007JPO3788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir-submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 30333056, https://doi.org/10.1175/JPO-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., L. N. Thomas, L. A. Thompson, and D. Darr, 2014: Potential vorticity dynamics of tropical instability vortices. J. Phys. Oceanogr., 44, 9951011, https://doi.org/10.1175/JPO-D-13-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, https://doi.org/10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., Y. Qi, B. Fox-Kemper, Y. Du, and S. Lian, 2016: Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. J. Geophys. Res. Oceans, 121, 19141930, https://doi.org/10.1002/2015JC011222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., L. N. Thomas, and F. Bahr, 2009: Wintertime observations of subtropical mode water formation within the Gulf Stream. Geophys. Res. Lett., 36, L02607, https://doi.org/10.1029/2008GL035918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. L. Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and Coauthors, 2019: Ocean-scale interactions from space. Earth Space Sci., 6, 795817, https://doi.org/10.1029/2018EA000492.

  • Klymak, J. M., and Coauthors, 2016: Submesoscale streamers exchange water on the north wall of the Gulf Stream. Geophys. Res. Lett., 43, 12261233, https://doi.org/10.1002/2015GL067152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and A. Kubokawa, 2012: Review on North Pacific subtropical countercurrents and subtropical fronts: Role of mode waters in ocean circulation and climate. J. Phys. Oceanogr., 68, 2143, https://doi.org/10.1007/s10872-011-0083-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., H. Mitsudera, and S. Xie, 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis. J. Geophys. Res., 111, C09033, https://doi.org/10.1029/2006JC003479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., P. Klein, and B. L. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36, 15771590, https://doi.org/10.1175/JPO2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., L. Roblou, and J. Bouffard, 2011: Characterizing the Navidad current interannual variability using coastal altimetry. Ocean Modell., 61, 425437, https://doi.org/10.1007/S10236-010-0360-9.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. S. Franks, A. P. Martin, and P. Rivière, 2012: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2015: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Fluid. Mech., 8, 161, https://doi.org/10.1146/ANNUREV-MARINE-010814-015912.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., X. Capet, C. Menkes, and S. C. Kennan, 2011: Submesoscale dynamics in tropical instability waves. Ocean Modell., 39, 3146, https://doi.org/10.1016/j.ocemod.2011.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/RSPA.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2017: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/jfm.2017.294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., I. Yavneh, M. J. P. Cullen, and P. R. Gent, 1998: The breakdown of large-scale flows in rotating, stratified fluids. Phys. Fluids, 10, 31783184, https://doi.org/10.1063/1.869844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., F. Colas, and M. J. Molemaker, 2009a: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett., 36, L18602, https://doi.org/10.1029/2009GL039402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009b: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, https://doi.org/10.1175/2009JPO4186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314, https://doi.org/10.1017/S0022112009992643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517, https://doi.org/10.1175/JPO2770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222225, https://doi.org/10.1126/science.1260062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J. C. McWilliams, 2006: Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modell., 12, 157187, https://doi.org/10.1016/j.ocemod.2005.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, https://doi.org/10.1029/95JC03204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213225, https://doi.org/10.1175/2009JPO4285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2013: Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre. J. Phys. Oceanogr., 43, 344358, https://doi.org/10.1175/JPO-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., R. B. Scott, and S. Chen, 2008: Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 38, 15151528, https://doi.org/10.1175/2007JPO3856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2011: Accurate Boussinesq oceanic modeling with a practical, “stiffened” equation of state. Ocean Modell., 38, 4170, https://doi.org/10.1016/j.ocemod.2011.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer campaign: Submesoscale stirring in the Upper Ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegelman, L., P. Klein, P. Rivière, A. F. Thompson, H. S. Torres, M. Flexas, and D. Menemenlis, 2020: Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci., 13, 5055, https://doi.org/10.1038/s41561-019-0489-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and Coauthors, 2015: Altimeter-derived seasonal circulation on the southwest Atlantic shelf: 27°–43°S. J. Geophys. Res. Oceans., 120, 33913418, https://doi.org/10.1002/2015JC010769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2009: On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech., 622, 103113, https://doi.org/10.1017/S0022112008005272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2011: Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett., 38, L23601, https://doi.org/10.1029/2011GL049312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, https://doi.org/10.1175/JPO2830.1.

  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and J. R. Taylor, 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18606, https://doi.org/10.1029/2010GL044680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime,Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, https://doi.org/10.1029/177GM04.

    • Crossref
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, E. A. D’Asaro, C. M. Lee, J. M. Klymak, and A. Shcherbina, 2015: Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr., 46, 197217, https://doi.org/10.1175/JPO-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., R. Holmes, J. N. Moum, and E. H. Mchugh Hawkins, 2018: Buoyant gravity currents released from tropical instability waves. J. Phys. Oceanogr., 48, 361382, https://doi.org/10.1175/JPO-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, https://doi.org/10.1002/joc.2103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, J. Dong, and J. Tian, 2017: Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J. Phys. Oceanogr., 47, 895907, https://doi.org/10.1175/JPO-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. Qiu, P. Klein, and S. Travis, 2019: The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nat. Commun., 10, 2838, https://doi.org/10.1038/s41467-019-10883-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Q., H. Lin, J. Meng, X. Hu, Y. T. Song, Y. Zhang, and C. Li, 2008: Sub-mesoscale ocean vortex trains in the Luzon Strait. J. Geophys. Res., 113, C04032, https://doi.org/10.1029/2007JC004362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., A. Bracco, J. Tian, J. Dong, W. Zhao, and Z. Zhang, 2017: Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Sci. Rep., 7, 44011, https://doi.org/10.1038/srep44011.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1726 0 0
Full Text Views 3611 1243 106
PDF Downloads 3480 1140 87