An Assessment of Global Ocean Barotropic Tide Models Using Geodetic Mission Altimetry and Surface Drifters

Edward D. Zaron Portland State University, Portland, Oregon

Search for other papers by Edward D. Zaron in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7799-2883
and
Shane Elipot Rosenstiel School of Atmospheric and Marine Science, University of Miami, Miami, Florida

Search for other papers by Shane Elipot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accuracy of three data-constrained barotropic ocean tide models is assessed by comparison with data from geodetic mission altimetry and ocean surface drifters, data sources chosen for their independence from the observational data used to develop the tide models. Because these data sources do not provide conventional time series at single locations suitable for harmonic analysis, model performance is evaluated using variance reduction statistics. The results distinguish between shallow and deep-water evaluations of the GOT410, TPXO9A, and FES2014 models; however, a hallmark of the comparisons is strong geographic variability that is not well summarized by global performance statistics. The models exhibit significant regionally coherent differences in performance that should be considered when choosing a model for a particular application. Quantitatively, the differences in explained SSH variance between the models in shallow water are only 1%–2% of the root-mean-square (RMS) tidal signal of about 50 cm, but the differences are larger at high latitudes, more than 10% of 30-cm RMS. Differences with respect to tidal currents variance are strongly influenced by small scales in shallow water and are not well represented by global averages; therefore, maps of model differences are provided. In deep water, the performance of the models is practically indistinguishable from one another using the present data. The foregoing statements apply to the eight dominant astronomical tides M2, S2, N2, K2, K1, O1, P1, and Q1. Variance reduction statistics for smaller tides are generally not accurate enough to differentiate the models’ performance.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0089.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward D. Zaron, ezaron@pdx.edu

Abstract

The accuracy of three data-constrained barotropic ocean tide models is assessed by comparison with data from geodetic mission altimetry and ocean surface drifters, data sources chosen for their independence from the observational data used to develop the tide models. Because these data sources do not provide conventional time series at single locations suitable for harmonic analysis, model performance is evaluated using variance reduction statistics. The results distinguish between shallow and deep-water evaluations of the GOT410, TPXO9A, and FES2014 models; however, a hallmark of the comparisons is strong geographic variability that is not well summarized by global performance statistics. The models exhibit significant regionally coherent differences in performance that should be considered when choosing a model for a particular application. Quantitatively, the differences in explained SSH variance between the models in shallow water are only 1%–2% of the root-mean-square (RMS) tidal signal of about 50 cm, but the differences are larger at high latitudes, more than 10% of 30-cm RMS. Differences with respect to tidal currents variance are strongly influenced by small scales in shallow water and are not well represented by global averages; therefore, maps of model differences are provided. In deep water, the performance of the models is practically indistinguishable from one another using the present data. The foregoing statements apply to the eight dominant astronomical tides M2, S2, N2, K2, K1, O1, P1, and Q1. Variance reduction statistics for smaller tides are generally not accurate enough to differentiate the models’ performance.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0089.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward D. Zaron, ezaron@pdx.edu

Supplementary Materials

    • Supplemental Materials (PDF 12.7 MB)
Save
  • Australian Bureau of Meteorology, 2020: McEwin Queensland Tide Predictions. Accessed 4 February 2020, http://www.bom.gov.au/australia/tides.

  • Cartwright, D. E., and R. J. Taylor, 1971: New computations of the tide-generating potential. Geophys. J. Roy. Astron. Soc., 23, 4573, https://doi.org/10.1111/j.1365-246X.1971.tb01803.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., and A. C. Edden, 1973: Corrected tables of tidal harmonics. Geophys. J. Roy. Astron. Soc., 33, 253264, https://doi.org/10.1111/j.1365-246X.1973.tb03420.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherniawsky, J. Y., M. G. G. Foreman, W. R. Crawford, and R. F. Henry, 2001: Ocean tides from TOPEX/Poseidon sea level data. J. Atmos. Oceanic Technol., 18, 649664, https://doi.org/10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., J. Y. Cherniawsky, and M. G. Foreman, 1998: Rotary velocity spectra from short drifter tracks. J. Atmos. Oceanic Technol., 15, 731740, https://doi.org/10.1175/1520-0426(1998)015<0731:RVSFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, S. D., and R. D. Ray, 2014: Consideration of tidal variations in the geocenter on satellite altimeter observations of ocean tides. Geophys. Res. Lett., 41, 24542459, https://doi.org/10.1002/2014GL059614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99, 24 82124 852, https://doi.org/10.1029/94JC01894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35, L05606, https://doi.org/10.1029/2007GL032874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., R. Lumpkin, and G. Prieto, 2010: Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res., 115, C09010, https://doi.org/10.1029/2009JC005679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., R. Lumpkin, R. C. Perez, J. M. Lilly, J. J. Early, and A. M. Sykulski, 2016: A global surface drifter data set at hourly resolution. J. Geophys. Res. Oceans, 121, 29372966, https://doi.org/10.1002/2016JC011716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foreman, M. G., 1977: Manual for tidal heights analysis and prediction. Pacific Marine Science Rep. 77-10, Institute of Ocean Sciences, Patricia Bay, 66 pp.

  • Foreman, M. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal analysis: Improvements and applications. J. Atmos. Oceanic Technol., 26, 806817, https://doi.org/10.1175/2008JTECHO615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodaira, T., K. R. Thompson, and N. B. Bernier, 2016: Prediction of M2 tidal surface currents by a global baroclinic ocean model and evaluation using observed drifter trajectories. J. Geophys. Res. Oceans, 121, 61596183, https://doi.org/10.1002/2015JC011549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeProvost, C., 2001: Ocean tides. Satellite Altimetry and Earth Sciences, L.-L. Fu, and A. Cazenave, Eds., International Geophysics Series, Vol. 69, Academic Press, 267–303.

    • Crossref
    • Export Citation
  • Lumpkin, R., and M. Pazos, 2007: Measuring surface currents with SVP drifters: the instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 39–67.

    • Crossref
    • Export Citation
  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, https://doi.org/10.1029/2010JC006338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and L. Centurioni, 2019: Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information, accessed 13 April 2020, https://doi.org/10.25921/7ntx-z961.

    • Crossref
    • Export Citation
  • Lumpkin, R., T. Özgökmen, and L. Centurioni, 2017: Advances in the application of surface drifters. Annu. Rev. Mar. Sci., 9, 5981, https://doi.org/10.1146/annurev-marine-010816-060641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyard, F., 1999: Data assimilation in a wave equation: A variational representer approach for the Grenoble tidal model. J. Comput. Phys., 149, 131, https://doi.org/10.1006/jcph.1998.5966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394415, https://doi.org/10.1007/s10236-006-0086-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naeije, M., E. Doornbos, L. Mathers, R. Scharroo, E. Schrama, and P. Visser, 2002: Radar Altimeter Database System: exploitation and extension (RADSxx). Tech. Rep. NUSP-2 02-06, NUSP-2 project 6.3/IS-66, Delft Institute for Earth-Oriented Space Research (DEOS), 113 pp.

  • Nelson, A., B. Arbic, E. D. Zaron, A. Savage, J. Richman, M. Buijsman, and J. Shriver, 2019: Toward realistic nonstationarity of semidiurnal baroclinic tides in a hydrodynamic model. J. Geophys. Res. Oceans, 124, 66326642, https://doi.org/10.1029/2018JC014737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngodock, H. E., I. Souopgui, A. J. Wallcraft, J. G. Richman, J. F. Shriver, and B. K. Arbic, 2016: On improving the accuracy of the M2 barotropic tides embedded in a high-resolution global ocean circulation model. Ocean Modell., 97, 1626, https://doi.org/10.1016/j.ocemod.2015.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., and L. Centurioni, 2015: Direct measurements of World Ocean tidal currents with surface drifters. J. Geophys. Res. Oceans, 120, 69867003, https://doi.org/10.1002/2015JC010818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1999: A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. Tech. Rep. 209478, NASA Tech. Memo., Goddard Space Flight Center, 58 pp., https://ntrs.nasa.gov/search.jsp?R=19990089548.

  • Ray, R. D., 2013: Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans, 118, 45704584, https://doi.org/10.1002/jgrc.20336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 2017: On tidal inference in the diurnal band. J. Atmos. Oceanic Technol., 34, 437446, https://doi.org/10.1175/JTECH-D-16-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. A. Byrne, 2010: Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry. Ocean Dyn., 60, 11671176, https://doi.org/10.1007/s10236-010-0316-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. D. Egbert, 2017: Tides and satellite altimetry. Satellite Altimetry Over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, 427–458.

    • Crossref
    • Export Citation
  • Sandwell, D. T., R. D. Muller, W. H. Smith, E. Garcia, and R. Francis, 2014: New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 6567, https://doi.org/10.1126/science.1258213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017: Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans, 122, 78037821, https://doi.org/10.1002/2017JC013009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schrama, E., and R. D. Ray, 1994: A preliminary tidal analysis of TOPEX/POSEIDON altimetry. J. Geophys. Res., 99, 24 79924 808, https://doi.org/10.1029/94JC01432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2018: Ocean and ice shelf tides from CryoSat-2 altimetry. J. Phys. Oceanogr., 48, 975993, https://doi.org/10.1175/JPO-D-17-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., 2019: Baroclinic tidal sea level from exact-repeat mission altimetry. J. Phys. Oceanogr., 49, 193210, https://doi.org/10.1175/JPO-D-18-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and R. D. Ray, 2017: Using an altimeter-derived internal tide model to remove tides from in situ data. Geophys. Res. Lett., 44, 42414245, https://doi.org/10.1002/2017GL072950.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 584 0 0
Full Text Views 923 304 26
PDF Downloads 920 304 23