• Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836, https://doi.org/10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashmachnikov, I., M. Sokolovskiy, T. Belonenko, D. Volkov, P. Isachsen, and X. Carton, 2017: On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Res. I, 128, 127, https://doi.org/10.1016/j.dsr.2017.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. Haidvogel, 1997: A numerical simulation of flow at Fieberling Guyot. J. Geophys. Res., 102, 55955613, https://doi.org/10.1029/96JC03414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosse, A., I. Fer, J. M. Lilly, and H. Søiland, 2019: Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten basin eddy. Sci. Rep., 9, 13448, https://doi.org/10.1038/s41598-019-49599-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and A. Venaille, 2012: Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep., 515, 227295, https://doi.org/10.1016/j.physrep.2012.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. P. Marshall, A. C. Naveira Garabato, A. G. Nurser, and J. Kaiser, 2017: Submesoscale instabilities in mesoscale eddies. J. Phys. Oceanogr., 47, 30613085, https://doi.org/10.1175/JPO-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brechner Owens, W., and N. G. Hogg, 1980: Oceanic observations of stratified Taylor columns near a bump. Deep-Sea Res., 27A, 10291045, https://doi.org/10.1016/0198-0149(80)90063-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and D. B. Haidvogel, 1976: Two-dimensional turbulence above topography. J. Fluid Mech., 78, 129154, https://doi.org/10.1017/S002211207600236X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K., 1986: Topographic drag due to barotropic flow over the continental shelf and slope. J. Phys. Oceanogr., 16, 21502158, https://doi.org/10.1175/1520-0485(1986)016<2150:TDDTBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., G. K. Vallis, R. Purini, and M. Briscolini, 1988: Propagation of barotropic modons over topography. Geophys. Astrophys. Fluid Dyn., 41, 45101, https://doi.org/10.1080/03091928808208831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., R. Kloosterziel, and G. Van Heijst, 1991: Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech., 233, 119139, https://doi.org/10.1017/S0022112091000411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., and G. Holloway, 1994: On eddy–topographic stress representation. J. Phys. Oceanogr., 24, 700706, https://doi.org/10.1175/1520-0485(1994)024<0700:OESR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1991: The third-order Adams–Bashforth method: An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119, 702720, https://doi.org/10.1175/1520-0493(1991)119<0702:TTOABM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., A. Bosse, B. Ferron, and P. Bouruet-Aubertot, 2018: The dissipation of kinetic energy in the Lofoten Basin eddy. J. Phys. Oceanogr., 48, 12991316, https://doi.org/10.1175/JPO-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeland, H., 1994: Ocean circulation at and near cobb seamount. Deep-Sea Res. I, 41, 17151732, https://doi.org/10.1016/0967-0637(94)90069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1973: On the stratified Taylor column. J. Fluid Mech., 58, 517537, https://doi.org/10.1017/S0022112073002302.

  • Huppert, H. E., and K. Bryan, 1976: Topographically generated eddies. Deep-Sea Res. Oceanogr. Abstr., 23, 655679, https://doi.org/10.1016/S0011-7471(76)80013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., J. LaCasce, C. Mauritzen, and S. Häkkinen, 2003: Wind-driven variability of the large-scale recirculating flow in the Nordic Seas and Arctic Ocean. J. Phys. Oceanogr., 33, 25342550, https://doi.org/10.1175/1520-0485(2003)033<2534:WVOTLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., E. García-Ladona, and J. Font, 2006: Vortices of the Mediterranean Sea: An altimetric perspective. J. Phys. Oceanogr., 36, 87103, https://doi.org/10.1175/JPO2826.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, Y., and A. Korablev, 1995: Formation and regeneration of the pycnocline lens in the Norwegian Sea. Russ. Meteor. Hydrol., 9, 6269.

    • Search Google Scholar
    • Export Citation
  • Kloosterziel, R., G. Carnevale, and D. Phillippe, 1993: Propagation of barotropic dipoles over topography in a rotating tank. Dyn. Atmos. Oceans, 19, 65100, https://doi.org/10.1016/0377-0265(93)90032-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2007: Generation and stability of a quasi-permanent vortex in the Lofoten Basin. J. Phys. Oceanogr., 37, 26372651, https://doi.org/10.1175/2007JPO3694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and E. Tadmor, 2000: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys., 160, 241282, https://doi.org/10.1006/jcph.2000.6459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Corre, M., J. Gulaa, A. Smilenovab, and L. Houpertd, 2019: On the dynamics of a deep quasi-permanent anticyclonic eddy in the Rockall Trough. 24th French Congress of Mechanics, Brest, France, Association Français de Mécanique, 12 pp., https://cfm2019.sciencesconf.org/245538/document.

  • Majda, A., and X. Wang, 2006: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, 564 pp.

    • Crossref
    • Export Citation
  • Mann, C. R., 1967: The termination of the Gulf Stream and the beginning of The North Atlantic Current. Deep-Sea Res. Oceanogr. Abstr., 14, 337359, https://doi.org/10.1016/0011-7471(67)90077-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, P. S., 1990: Vortex dynamics in a shearing zonal flow. J. Fluid Mech., 215, 393430, https://doi.org/10.1017/S0022112090002695.

  • Martin, A. P., I. P. Wade, K. J. Richards, and K. J. Heywood, 1998: The PRIME eddy. J. Mar. Res., 56, 439462, https://doi.org/10.1357/002224098321822375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 1998: Effects of stratification on quasi-geostrophic inviscid equilibria. J. Fluid Mech., 354, 345356, https://doi.org/10.1017/S0022112097007684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., P. F. Cummins, and G. Holloway, 2001: Equilibrium statistical mechanics of barotropic flow over finite topography. J. Phys. Oceanogr., 31, 18801890, https://doi.org/10.1175/1520-0485(2001)031<1880:ESMOBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., and P. E. Isachsen, 2003: The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics. J. Mar. Res., 61, 175210, https://doi.org/10.1357/002224003322005069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasquero, C., A. Provenzale, and A. Babiano, 2001: Parameterization of dispersion in two-dimensional turbulence. J. Fluid Mech., 439, 279303, https://doi.org/10.1017/S0022112001004499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raj, R. P., L. Chafik, J. E. Ø. Nilsen, T. Eldevik, and I. Halo, 2015: The Lofoten vortex of the Nordic Seas. Deep-Sea Res. I, 96, 114, https://doi.org/10.1016/j.dsr.2014.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, J., and R. Pollard, 2001: A long-lived eddy in the Iceland Basin 1998. J. Geophys. Res., 106, 11 41111 421, https://doi.org/10.1029/2000JC000492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, C. G., and F. Straneo, 2015: Observations of water mass transformation and eddies in the Lofoten Basin of the Nordic Seas. J. Phys. Oceanogr., 45, 17351756, https://doi.org/10.1175/JPO-D-14-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1981: Anticyclonic eddies generated near the corner rise seamounts. J. Mar. Res., 38, 673686, https://doi.org/10.1575/1912/10240.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1996: The North Atlantic Current and surrounding waters: At the crossroads. Rev. Geophys., 34, 463481, https://doi.org/10.1029/96RG02214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 400 pp.

    • Crossref
    • Export Citation
  • Salmon, R., G. Holloway, and M. C. Hendershott, 1976: The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech., 75, 691703, https://doi.org/10.1017/S0022112076000463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., 1995: Interaction of turbulent barotropic shallow-water flow with topography. Topographic Effects in the Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 225–237, https://www.soest.hawaii.edu/PubServices/1995pdfs/Shchepetkin.pdf.

  • Søiland, H., and T. Rossby, 2013: On the structure of the Lofoten Basin eddy. J. Geophys. Res. Oceans, 118, 42014212, https://doi.org/10.1002/jgrc.20301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Søiland, H., L. Chafik, and T. Rossby, 2016: On the long-term stability of the lofoten Basin eddy. J. Geophys. Res. Oceans, 121, 44384449, https://doi.org/10.1002/2016JC011726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., 2018: Back of Envelope Ocean Model (BEOM). Accessed 25 December 2019, www.nordet.net/beom.html.

  • Stewart, A. L., and P. J. Dellar, 2016: An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force. J. Comput. Phys., 313, 99120, https://doi.org/10.1016/j.jcp.2015.12.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towns, J., and et al. , 2014: Xsede: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

  • Trodahl, M., P. E. Isachsen, J. Nilsson, J. M. Lilly, and N. Melsom Kristensen, 2020: The regeneration of the Lofoten Vortex through vertical alignment. J. Phys. Oceanogr., 50, 26892711, https://doi.org/10.1175/JPO-D-20-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and J. Marshall, 2012: Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J. Climate, 25, 40674080, https://doi.org/10.1175/JCLI-D-11-00460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venaille, A., 2012: Bottom-trapped currents as statistical equilibrium states above topographic anomalies. J. Fluid Mech., 699, 500510, https://doi.org/10.1017/jfm.2012.146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., A. A. Kubryakov, and R. Lumpkin, 2015: Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep-Sea Res. I, 105, 142157, https://doi.org/10.1016/j.dsr.2015.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, I. P., and K. J. Heywood, 2001: Tracking the PRIME eddy using satellite altimetry. Deep-Sea Res. II, 48, 725737, https://doi.org/10.1016/S0967-0645(00)00094-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, M., and C. Mohn, 2004: Seamounts: A review of physical processes and their influence on the seamount ecosystem. OASIS Rep., 38 pp., https://epic.awi.de/id/eprint/37314/17/OASIS_Oceanography.pdf.

  • Willis, J. K., and L.-L. Fu, 2008: Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean. J. Geophys. Res., 113, C12017, https://doi.org/10.1029/2007JC004690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L.-S., A. Bosse, I. Fer, K. A. Orvik, E. M. Bruvik, I. Hessevik, and K. Kvalsund, 2017: The Lofoten Basin eddy: Three years of evolution as observed by Seagliders. J. Geophys. Res. Oceans, 122, 68146834, https://doi.org/10.1002/2017JC012982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., A. Bower, J. Yang, X. Lin, and C. Zhou, 2018: Structure and formation of anticyclonic eddies in the Iceland Basin. J. Geophys. Res. Oceans, 123, 53415359, https://doi.org/10.1029/2018JC013886.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 272 272 20
Full Text Views 130 130 8
PDF Downloads 152 152 10

Formation of Anticyclones above Topographic Depressions

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Long-lived anticyclonic eddies (ACs) have been repeatedly observed over several North Atlantic basins characterized by bowl-like topographic depressions. Motivated by these previous findings, the authors conduct numerical simulations of the spindown of eddies initialized in idealized topographic bowls. In experiments with one or two isopycnal layers, it is found that a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by anomalously low potential vorticity (PV). Several PV segregation mechanisms that can contribute to the AC formation are examined. In one-layer experiments, the dynamics of the AC are largely determined by a nonlinearity parameter ϵ that quantifies the vorticity of the AC relative to the bowl’s topographic PV gradient. The AC is trapped in the bowl for low ϵ1, but for moderate values (0.5ϵ1) partial PV segregation allows the AC to reside at finite distances from the center of the bowl. For higher ϵ1, eddies freely cross the topography and the AC is not confined to the bowl. These regimes are characterized across a suite of model experiments using ϵ and a PV homogenization parameter. Two-layer experiments show that the trapped AC can be top or bottom intensified, as determined by the domain-mean initial vertical energy distribution. These findings contrast with previous theories of mesoscale turbulence over topography that predict the formation of a prograde slope current, but do not predict a trapped AC.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0150.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aviv Solodoch, asolodoch@atmos.ucla.edu

Abstract

Long-lived anticyclonic eddies (ACs) have been repeatedly observed over several North Atlantic basins characterized by bowl-like topographic depressions. Motivated by these previous findings, the authors conduct numerical simulations of the spindown of eddies initialized in idealized topographic bowls. In experiments with one or two isopycnal layers, it is found that a bowl-trapped AC is an emergent circulation pattern under a wide range of parameters. The trapped AC, often formed by repeated mergers of ACs over the bowl interior, is characterized by anomalously low potential vorticity (PV). Several PV segregation mechanisms that can contribute to the AC formation are examined. In one-layer experiments, the dynamics of the AC are largely determined by a nonlinearity parameter ϵ that quantifies the vorticity of the AC relative to the bowl’s topographic PV gradient. The AC is trapped in the bowl for low ϵ1, but for moderate values (0.5ϵ1) partial PV segregation allows the AC to reside at finite distances from the center of the bowl. For higher ϵ1, eddies freely cross the topography and the AC is not confined to the bowl. These regimes are characterized across a suite of model experiments using ϵ and a PV homogenization parameter. Two-layer experiments show that the trapped AC can be top or bottom intensified, as determined by the domain-mean initial vertical energy distribution. These findings contrast with previous theories of mesoscale turbulence over topography that predict the formation of a prograde slope current, but do not predict a trapped AC.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0150.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aviv Solodoch, asolodoch@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (ZIP 19.2 MB)
Save