• Biló, T. C., and W. E. Johns, 2019: Interior pathways of Labrador Sea water in the North Atlantic from the Argo perspective. Geophys. Res. Lett., 46, 33403348, https://doi.org/10.1029/2018GL081439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biló, T. C., and W. E. Johns, 2020: The deep western boundary current and adjacent interior circulation at 24°–30°N: Mean structure and mesoscale variability. J. Phys. Oceanogr., 50, 27352758, https://doi.org/10.1175/JPO-D-20-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and H. D. Hunt, 2000: Lagrangian observations of the deep western boundary current in the North Atlantic Ocean. Part II: The Gulf Stream–deep western boundary current crossover. J. Phys. Oceanogr., 30, 784804, https://doi.org/10.1175/1520-0485(2000)030<0784:LOOTDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., W. E. Johns, and P. M. Saunders, 2005: Deep western boundary current east of Abaco: Mean structure and transport. J. Mar. Res., 63, 3557, https://doi.org/10.1357/0022240053693806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. Gulf Professional Publishing, 638 pp.

  • Gary, S. F., S. M. Lozier, C. W. Böning, and A. Biastoch, 2011: Deciphering the pathways for the deep limb of the meridional overturning circulation. Deep-Sea Res., 58, 17811797, https://doi.org/10.1016/j.dsr2.2010.10.059.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., S. Dong, R. Fine, C. S. Meinen, P. C. Renellys, C. Schmid, E. van Sebille, and Q. Yao, 2015: The fate of the deep western boundary current in the South Atlantic. Deep-Sea Res., 103, 125136, https://doi.org/10.1016/j.dsr.2015.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1983: A note on the deep circulation of the western North Atlantic: Its nature and causes. Deep-Sea Res., 30, 945961, https://doi.org/10.1016/0198-0149(83)90050-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and W. E. Johns, 1995: Western boundary currents. Rev. Geophys., 33, 13111334, https://doi.org/10.1029/95RG00491.

  • Hogg, N. G., R. S. Pickart, R. M. Hendry, and W. J. Smethie, 1986: The northern recirculation gyre of the Gulf Stream. Deep-Sea Res., 33, 11391165, https://doi.org/10.1016/0198-0149(86)90017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., and P. B. Rhines, 1980: An example of eddy-induced ocean circulation. J. Phys. Oceanogr., 10, 10101031, https://doi.org/10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, E., R. A. Fine, and R. L. Molinari, 1997: Deep flow along the western boundary south of the Blake Bahama outer ridge. J. Phys. Oceanogr., 27, 21872208, https://doi.org/10.1175/1520-0485(1997)027<2187:DFATWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. J. Shay, J. M. Bane, and R. D. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817838, https://doi.org/10.1029/94JC02497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., L. M. Beal, M. O. Baringer, J. R. Molina, S. A. Cunningham, T. Kanzow, and D. Rayner, 2008: Variability of shallow and deep western boundary currents off the Bahamas during 2004–05: Results from the 26°N RAPID-MOC array. J. Phys. Oceanogr., 38, 605623, https://doi.org/10.1175/2007JPO3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and P. S. Vertes, 1996: Topographic influences on recirculation in the deep western boundary current: Results from RAFOS float trajectories between the Blake–Bahama outer ridge and the San Salvador “gate.” J. Phys. Oceanogr., 26, 941961, https://doi.org/10.1175/1520-0485(1996)026<0941:TIORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A., S. R. Jayne, and J. M. Toole, 2018: The interaction of recirculation gyres and a deep boundary current. J. Phys. Oceanogr., 48, 573590, https://doi.org/10.1175/JPO-D-17-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., W. E. Johns, R. Zantopp, and F. Schott, 1990: Western boundary current structure and variability east of Abaco, Bahamas at 26.5°N. J. Phys. Oceanogr., 20, 446466, https://doi.org/10.1175/1520-0485(1990)020<0446:WBCSAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., W. E. Johns, R. J. Zantopp, and E. R. Fillenbaum, 1996: Moored observations of western boundary current variability and thermohaline circulation at 26.5°N in the subtropical North Atlantic. J. Phys. Oceanogr., 26, 962983, https://doi.org/10.1175/1520-0485(1996)026<0962:MOOWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chao, and J. C. McWilliams, 2006: Computation of the streamfunction and velocity potential for limited and irregular domains. Mon. Wea. Rev., 134, 33843394, https://doi.org/10.1175/MWR3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, S. M., 1997: Evidence for large-scale eddy-driven gyres in the North Atlantic. Science, 277, 361364, https://doi.org/10.1126/science.277.5324.361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, S. M., and S. C. Riser, 1989: Potential vorticity dynamics of boundary currents in a quasi-geostrophic ocean. J. Phys. Oceanogr., 19, 13731396, https://doi.org/10.1175/1520-0485(1989)019<1373:PVDOBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüschow, V., J. von Storch, and J. Marotzke, 2019: Diagnosing the influence of mesoscale eddy fluxes on the deep western boundary current in the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 49, 751764, https://doi.org/10.1175/JPO-D-18-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. R. C. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103, 30 82530 853, https://doi.org/10.1029/1998JC900013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and et al. , 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and S. L. Garzoli, 2014: Attribution of deep western boundary current variability at 26.5°N. Deep-Sea Res., 90, 8190, https://doi.org/10.1016/j.dsr.2014.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., W. E. Johns, S. L. Garzoli, E. van Sebille, D. Rayner, T. Kanzow, and M. O. Baringer, 2013: Variability of the deep western boundary current at 26.5°N during 2004–2009. Deep-Sea Res., 85, 154168, https://doi.org/10.1016/j.dsr2.2012.07.036.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and et al. , 2019: Structure and variability of the Antilles current at 26.5°N. J. Geophys. Res. Oceans, 124, 37003723, https://doi.org/10.1029/2018JC014836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertens, C., M. Rhein, M. Walter, C. W. Böning, E. Behrens, D. Kieke, R. Steinfeldt, and U. Stöber, 2014: Circulation and transports in the Newfoundland basin, western subpolar North Atlantic. J. Geophys. Res. Oceans, 119, 77727793, https://doi.org/10.1002/2014JC010019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

  • Pickart, R. S., and W. M. Smethie, 1993: How does the deep western boundary current cross the Gulf Stream? J. Phys. Oceanogr., 23, 26022616, https://doi.org/10.1175/1520-0485(1993)023<2602:HDTDWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Hacker, N. G. Hogg, S. R. Jayne, and H. Sasaki, 2008: The Kuroshio extension northern recirculation gyre: Profiling float measurements and forcing mechanism. J. Phys. Oceanogr., 38, 17641779, https://doi.org/10.1175/2008JPO3921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289325, https://doi.org/10.1016/0377-0265(79)90015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasai, Y., A. Ishida, Y. Yamanaka, and H. Sasaki, 2004: Chlorofluorocarbons in a global ocean eddy-resolving OGCM: Pathway and formation of Antarctic bottom water. Geophys. Res. Lett., 31, L12305, https://doi.org/10.1029/2004GL019895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, Springer, 157–185.

    • Crossref
    • Export Citation
  • Schmitz, W. J., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31, 2949, https://doi.org/10.1029/92RG02583.

  • Spall, M. A., 1994: Wave-induced abyssal recirculations. J. Mar. Res., 52, 10511080, https://doi.org/10.1357/0022240943076830.

  • Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part I: Entrainment and recirculation. J. Phys. Oceanogr., 26, 21522168, https://doi.org/10.1175/1520-0485(1996)026<2152:DOTGSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Descriptive Physical Oceanography: An Introduction. 6th ed. Academic Press, 560 pp.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., M. Andres, I. A. Le Bras, T. M. Joyce, and M. S. McCartney, 2017: Moored observations of the deep western boundary current in the NW Atlantic: 2004–2014. J. Geophys. Res. Oceans, 122, 74887505, https://doi.org/10.1002/2017JC012984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. R., 2017: Atmospheric and Oceanic Fluid Dynamics. 2nd ed. Cambridge University Press, 964 pp.

  • van Sebille, E., M. O. Baringer, W. E. Johns, C. S. Meinen, L. M. Beal, M. F. de Jong, and H. M. Aken, 2011: Propagation pathways of classical Labrador Sea water from its source region to 26°N. J. Geophys. Res., 116, C12027, https://doi.org/10.1029/2011JC007171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Sebille, E., W. E. Johns, and L. M. Beal, 2012: Does the vorticity flux from Agulhas rings control the zonal pathway of NADW across the South Atlantic? J. Geophys. Res., 117, C05037, https://doi.org/10.1029/2011JC007684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C., and R. G. Williams, 2004: Why are eddy fluxes of potential vorticity difficult to parameterize? J. Phys. Oceanogr., 34, 142155, https://doi.org/10.1175/1520-0485(2004)034<0142:WAEFOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Schmitz, H. E. Hurlburt, P. J. Hogan, and E. P. Chassignet, 2010: Transport of Nordic Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations. J. Geophys. Res., 115, C12048, https://doi.org/10.1029/2010JC006351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., W. J. Schmitz, H. E. Hurlburt, and P. J. Hogan, 2012: Mean Atlantic meridional overturning circulation across 26.5°N from eddy-resolving simulations compared to observations. J. Geophys. Res. Oceans, 117, C03042, https://doi.org/10.1029/2011JC007586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., H. E. Hurlburt, W. J. Schmitz, R. Zantopp, J. Fischer, and P. J. Hogan, 2013: On the currents and transports connected with the Atlantic meridional overturning circulation in the subpolar North Atlantic. J. Geophys. Res. Oceans, 118, 502516, https://doi.org/10.1002/jgrc.20065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., A. Bower, J. Yang, X. Lin, and N. Penny Holliday, 2018a: Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic. Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., J. Yang, S. Semper, R. S. Pickart, K. Våge, H. Valdimarsson, and S. Jónsson, 2018b: A numerical study of interannual variability in the North Icelandic Irminger Current. J. Geophys. Res. Oceans, 123, 89949009, https://doi.org/10.1029/2018JC013800.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 257 257 15
Full Text Views 72 72 8
PDF Downloads 84 84 10

Dynamics of Deep Recirculation Cells Offshore of the Deep Western Boundary Current in the Subtropical North Atlantic (15°–30°N)

View More View Less
  • 1 Scripps Institution of Oceanography, University California, San Diego, La Jolla, California
  • | 2 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 3 Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The dynamics of the deep recirculation offshore of the deep western boundary current (DWBC) between 15° and 30°N within the upper North Atlantic Deep Water layer (1000 ≤ z ≤ 3000 m) is investigated with two different eddy-resolving numerical simulations. Despite some differences in the recirculation cells, our assessment of the modeled deep isopycnal circulation patterns (36.77 ≤ σ2 ≤ 37.06 kg m−3) shows that both simulations predict the DWBC flowing southward along the continental slope, while the so-called Abaco Gyre and two additional cyclonic cells recirculate waters northward in the interior. These cells are a few degrees wide, located along the DWBC path, and characterized by potential vorticity (PV) changes occurring along their mean streamlines. The analysis of the mean PV budget reveals that these changes result from the action of eddy forcing that tends to erode the PV horizontal gradients. The lack of a major upper-ocean boundary current within the study region, and the fact that the strongest eddy forcing is constrained within a few hundreds of kilometers of the western boundary, suggest that the DWBC is the primary source of eddy forcing. Finally, the eddies responsible for forcing the recirculation have dominant time scales between 100 and 300 days, which correspond to the primary observed variability scales of the DWBC transport at 26.5°N.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0184.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tiago Carrilho Biló, tcarrilhobilo@ucsd.edu

Abstract

The dynamics of the deep recirculation offshore of the deep western boundary current (DWBC) between 15° and 30°N within the upper North Atlantic Deep Water layer (1000 ≤ z ≤ 3000 m) is investigated with two different eddy-resolving numerical simulations. Despite some differences in the recirculation cells, our assessment of the modeled deep isopycnal circulation patterns (36.77 ≤ σ2 ≤ 37.06 kg m−3) shows that both simulations predict the DWBC flowing southward along the continental slope, while the so-called Abaco Gyre and two additional cyclonic cells recirculate waters northward in the interior. These cells are a few degrees wide, located along the DWBC path, and characterized by potential vorticity (PV) changes occurring along their mean streamlines. The analysis of the mean PV budget reveals that these changes result from the action of eddy forcing that tends to erode the PV horizontal gradients. The lack of a major upper-ocean boundary current within the study region, and the fact that the strongest eddy forcing is constrained within a few hundreds of kilometers of the western boundary, suggest that the DWBC is the primary source of eddy forcing. Finally, the eddies responsible for forcing the recirculation have dominant time scales between 100 and 300 days, which correspond to the primary observed variability scales of the DWBC transport at 26.5°N.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-20-0184.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tiago Carrilho Biló, tcarrilhobilo@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 15.0 MB)
Save