• Akitomo, K., 2005: Numerical study of baroclinic instability associated with thermobaric deep convection at high latitudes: Idealized cases. Deep-Sea Res. I, 52, 937957, https://doi.org/10.1016/j.dsr.2004.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D. L., 1961: Growth rate of sea ice. J. Glaciol., 3, 11701172, https://doi.org/10.1017/S0022143000017676.

  • Bauer, J., and S. Martin, 1983: A model of grease ice growth in small leads. J. Geophys. Res., 88, 29172925, https://doi.org/10.1029/JC088iC05p02917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, P., D. Straub, K. Duquette, L.-P. Nadeau, and B. Tremblay, 2020: Vertical heat fluxes beneath idealized sea ice leads in large-eddy simulations: Comparison with observations from the SHEBA experiment. J. Phys. Oceanogr., 50, 21892202, https://doi.org/10.1175/JPO-D-19-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, J. W. M., and A. W. Woods, 1999: Vortex generation by line plumes in a rotating stratified fluid. J. Fluid Mech., 388, 289313, https://doi.org/10.1017/S0022112099004759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bush, J. W. M., and A. W. Woods, 2000: An investigation of the link between lead-induced thermohaline convection and Arctic eddies. Geophys. Res. Lett., 27, 11791182, https://doi.org/10.1029/1999GL002314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: A synthesis of Antarctic temperatures. J. Climate, 20, 40964117, https://doi.org/10.1175/JCLI4236.1.

  • Cole, S. T., M.-L. Timmermans, J. M. Toole, R. A. Krishfield, and F. T. Thwaites, 2014: Ekman veering, internal waves, and turbulence observed under Arctic sea ice. J. Phys. Oceanogr., 44, 13061328, https://doi.org/10.1175/JPO-D-12-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988: Observations of small eddies in the Beaufort Sea. J. Geophys. Res. Oceans, 93, 66696684, https://doi.org/10.1029/JC093iC06p06669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., and et al. , 2018: Quantifying climate feedbacks in polar regions. Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., 2018: Antarctic thermocline dynamics along a narrow shelf with easterly winds. J. Phys. Oceanogr., 48, 24192443, https://doi.org/10.1175/JPO-D-18-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heorton, H. D., N. Radia, and D. L. Feltham, 2017: A model of sea ice formation in leads and polynyas. J. Phys. Oceanogr., 47, 17011718, https://doi.org/10.1175/JPO-D-16-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

  • Holte, J., and L. Talley, 2009: A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation. J. Atmos. Oceanic Technol., 26, 19201939, https://doi.org/10.1175/2009JTECHO543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., A. J. Adcroft, R. Hallberg, and I. M. Held, 2015: Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Modell., 92, 2841, https://doi.org/10.1016/j.ocemod.2015.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., 1995: A numerical model of arctic leads. J. Geophys. Res., 100, 46534672, https://doi.org/10.1029/94JC02348.

  • Key, J., R. Stone, J. Maslanik, and E. Ellefsen, 1993: The detectability of sea-ice leads in satellite data as a function of atmospheric conditions and measurement scale. Ann. Glaciol., 17, 227232, https://doi.org/10.3189/S026030550001288X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J.-H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • LaCasce, J., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764780, https://doi.org/10.1175/JPO-D-13-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 22852297, https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and D. A. Rothrock, 1995: Arctic sea ice leads from advanced very high resolution radiometer images. J. Geophys. Res., 100, 45334544, https://doi.org/10.1029/94JC02393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manley, T. O., and K. Hunkins, 1985: Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90, 49114930, https://doi.org/10.1029/JC090iC03p04911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and M.-L. Timmermans., 2013: Generation and separation of mesoscale eddies from surface ocean fronts. J. Phys. Oceanogr., 43, 25452562, https://doi.org/10.1175/JPO-D-13-094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, https://doi.org/10.1029/98RG02739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumura, Y., and H. Hasumi, 2008: Brine-driven eddies under sea ice leads and their impact on the Arctic Ocean mixed layer. J. Phys. Oceanogr., 38, 146163, https://doi.org/10.1175/2007JPO3620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • McPhee, M. G., 2012: Advances in understanding ice–ocean stress during and since AIDJEX. Cold Reg. Sci. Technol., 76–77, 2436, https://doi.org/10.1016/j.coldregions.2011.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghello, G., J. Marshall, C. Lique, P. E. Isachsen, E. Doddridge, J.-M. Campin, H. Regan, and C. Talandier, 2021: Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior Arctic Ocean. J. Phys. Oceanogr., 51, 115129, https://doi.org/10.1175/JPO-D-20-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millero, F. J., and W. Leung, 1976: Thermodynamics of seawater at one atmosphere. Am. J. Sci., 276, 10351077, https://doi.org/10.2475/ajs.276.9.1035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morison, J. H., M. G. McPhee, T. B. Curtin, and C. A. Paulson, 1992: The oceanography of winter leads. J. Geophys. Res., 97, 11 19911 218, https://doi.org/10.1029/92JC00684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, R. D., J. T. Gunn, T. E. Whitledge, P. Schlosser, and W. Smethie Jr., 2000: An Arctic Ocean cold core eddy. J. Geophys. Res., 105, 232997–242006, https://doi.org/10.1029/2000JC000212.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., E. L. McDonagh, D. P. Stevens, K. J. Heywood, and R. J. Sanders, 2002: On the export of Antarctic bottom water from the Weddell Sea. Deep-Sea Res. II, 49, 47154742, https://doi.org/10.1016/S0967-0645(02)00156-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2009: Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization. J. Geophys. Res., 114, C11014, https://doi.org/10.1029/2008JC005121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K., Y. Fukamachi, and G. Williams, 2013: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci., 6, 235240, https://doi.org/10.1038/ngeo1738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., and A. Stewart, 2016: An analytical model for wind-driven arctic summer sea ice drift. Cryosphere, 10, 227244, https://doi.org/10.5194/tc-10-227-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellichero, V., J.-B. Sallée, S. Schmidtko, F. Roquet, J.-B. Charrassin, 2017: The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing. J. Geophys. Res. Oceans, 122, 16081633, https://doi.org/10.1002/2016JC011970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., T. S. Weingartner, L. J. Pratt, S. Zimmermann, and D. J. Torres, 2005: Flow of winter-transformed Pacific water into the western Arctic. Deep-Sea Res. II, 52, 31753198, https://doi.org/10.1016/j.dsr2.2005.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht Über Untersuchungen zur ausgebildeten Turbulenz. Zeitschr. Angew. Math. Mech., 5, 136139, https://doi.org/10.1002/zamm.19250050212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reiser, F., S. Willmes, and G. Heinemann, 2020: A new algorithm for daily sea ice lead identification in the Arctic and Antarctic winter from thermal-infrared satellite imagery. Remote Sens., 12, 1957, https://doi.org/10.3390/rs12121957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Send, U., and J. Marshall, 1995: Integral effects of deep convection. J. Phys. Oceanogr., 25, 855872, https://doi.org/10.1175/1520-0485(1995)025<0855:IEODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 2001: Turbulence beneath sea ice and leads: A coupled sea ice/large-eddy simulation study. J. Geophys. Res., 106, 24772497, https://doi.org/10.1029/1999JC000091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. C., and J. H. Morison, 1998: Nonhydrostatic haline convection under leads in sea ice. J. Geophys. Res., 103, 32333247, https://doi.org/10.1029/97JC02262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. C., J. W. Lavelle, and H. J. S. Fernando, 2002: Arctic Ocean mixed-layer eddy generation under leads in sea ice. J. Geophys. Res., 107, 3103, https://doi.org/10.1029/2001JC000822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., R. D. Muench, and C. H. Pease, 1990: Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res., 95, 94619479, https://doi.org/10.1029/JC095iC06p09461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, N., and et al. , 2004: Comparing modeled streamfunction, heat and freshwater content in the Arctic Ocean. Ocean Modell., 6, 265284, https://doi.org/10.1016/S1463-5003(03)00013-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum-Antarctic shoreward heat transport derived from an eddy-and tide-resolving simulation. Geophys. Res. Lett., 45, 834845, https://doi.org/10.1002/2017GL075677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic slope currents by winds, eddies and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarshish, N., R. Abernathey, C. Zhang, C. O. Dufour, I. Frenger, and S. M. Griffies, 2018: Identifying Lagrangian coherent vortices in a mesoscale ocean model. Ocean Modell., 130, 1528, https://doi.org/10.1016/j.ocemod.2018.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36, 720738, https://doi.org/10.1175/JPO2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and J. Marshall, 2020: Understanding Arctic Ocean circulation: A review of Ocean dynamics in a changing climate. J. Geophys. Res. Oceans, 125, e2018JC014378, https://doi.org/10.1029/2018JC014378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, A. Proshutinsky, R. Krishfield, and A. Plueddemann, 2008: Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38, 133145, https://doi.org/10.1175/2007JPO3782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Towns, J., and et al. , 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

  • Turner, J., and et al. , 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294, https://doi.org/10.1002/joc.1130.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadhams, P., A. S. McLaren, and R. Weintraub, 1985: Ice thickness distribution in Davis Straight in February from submarine Sonar Profiles. J. Geophys. Res., 90, 10691077, https://doi.org/10.1029/JC090iC01p01069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and A. L. Stewart, 2020: Scalings for eddy buoyancy transfer across continental slopes under retrograde winds. Ocean Modell., 147, 101579, https://doi.org/10.1016/j.ocemod.2020.101579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., F. J. Beron-Vera, and M. J. Olascoaga, 2016: The life cycle of a coherent Lagrangian Agulhas ring. J. Geophys. Res. Oceans, 121, 39443954, https://doi.org/10.1002/2015JC011620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilchinsky, A. V., H. D. Heorton, D. L. Feltham, and P. R. Holland, 2015: Study of the impact of ice formation in leads upon the sea ice pack mass balance using a new frazil and grease ice parameterization. J. Phys. Oceanogr., 45, 20252047, https://doi.org/10.1175/JPO-D-14-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, A. Proshutinsky, and J. Toole, 2014: Characterizing the eddy field in the Arctic Ocean halocline. J. Geophys. Res. Oceans, 119, 88008817, https://doi.org/10.1002/2014JC010488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., M.-L. Timmermans, S. Cole, R. Krishfield, and J. Toole, 2016: Evolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015. Geophys. Res. Lett., 43, 81068114, https://doi.org/10.1002/2016GL069671.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 334 334 172
Full Text Views 100 100 52
PDF Downloads 141 141 69

Dynamics of Eddies Generated by Sea Ice Leads

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Interaction between the atmosphere and ocean in sea ice–covered regions is largely concentrated in leads, which are long, narrow openings between sea ice floes. Refreezing and brine rejection in these leads inject salt that plays a key role in maintaining the polar halocline. The injected salt forms dense plumes that subsequently become baroclinically unstable, producing submesoscale eddies that facilitate horizontal spreading of the salt anomalies. However, it remains unclear which properties of the stratification and leads most strongly influence the vertical and horizontal spreading of lead-input salt anomalies. In this study, the spread of lead-injected buoyancy anomalies by mixed layer and eddy processes are investigated using a suite of idealized numerical simulations. The simulations are complemented by dynamical theories that predict the plume convection depth, horizontal eddy transfer coefficient, and eddy kinetic energy as functions of the ambient stratification and lead properties. It is shown that vertical penetration of buoyancy anomalies is accurately predicted by a mixed layer temperature and salinity budget until the onset of baroclinic instability (~3 days). Subsequently, these buoyancy anomalies are spread horizontally by eddies. The horizontal eddy diffusivity is accurately predicted by a mixing-length scaling, with a velocity scale set by the potential energy released by the sinking salt plume and a length scale set by the deformation radius of the ambient stratification. These findings indicate that the intermittent opening of leads can efficiently populate the polar halocline with submesoscale coherent vortices with diameters of ~10 km, and they provide a step toward parameterizing their effect on the horizontal redistribution of salinity anomalies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaylie Cohanim, kcohanim@princeton.edu

Abstract

Interaction between the atmosphere and ocean in sea ice–covered regions is largely concentrated in leads, which are long, narrow openings between sea ice floes. Refreezing and brine rejection in these leads inject salt that plays a key role in maintaining the polar halocline. The injected salt forms dense plumes that subsequently become baroclinically unstable, producing submesoscale eddies that facilitate horizontal spreading of the salt anomalies. However, it remains unclear which properties of the stratification and leads most strongly influence the vertical and horizontal spreading of lead-input salt anomalies. In this study, the spread of lead-injected buoyancy anomalies by mixed layer and eddy processes are investigated using a suite of idealized numerical simulations. The simulations are complemented by dynamical theories that predict the plume convection depth, horizontal eddy transfer coefficient, and eddy kinetic energy as functions of the ambient stratification and lead properties. It is shown that vertical penetration of buoyancy anomalies is accurately predicted by a mixed layer temperature and salinity budget until the onset of baroclinic instability (~3 days). Subsequently, these buoyancy anomalies are spread horizontally by eddies. The horizontal eddy diffusivity is accurately predicted by a mixing-length scaling, with a velocity scale set by the potential energy released by the sinking salt plume and a length scale set by the deformation radius of the ambient stratification. These findings indicate that the intermittent opening of leads can efficiently populate the polar halocline with submesoscale coherent vortices with diameters of ~10 km, and they provide a step toward parameterizing their effect on the horizontal redistribution of salinity anomalies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaylie Cohanim, kcohanim@princeton.edu
Save