Water Mass Transformation and Overturning Circulation in the Arabian Gulf

Maryam R. Al-Shehhi aCivil and Environmental Engineering, Khalifa University, Abu Dhabi, United Arab Emirates

Search for other papers by Maryam R. Al-Shehhi in
Current site
Google Scholar
PubMed
Close
,
Hajoon Song bDepartment of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hajoon Song in
Current site
Google Scholar
PubMed
Close
,
Jeffery Scott cDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Jeffery Scott in
Current site
Google Scholar
PubMed
Close
, and
John Marshall cDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We diagnose the ocean’s residual overturning circulation of the Arabian Gulf in a high-resolution model and interpret it in terms of water-mass transformation processes mediated by air–sea buoyancy fluxes and interior mixing. We attempt to rationalize the complex three-dimensional flow in terms of the superposition of a zonal (roughly along axis) and meridional (transverse) overturning pattern. Rates of overturning and the seasonal cycle of air–sea fluxes sustaining them are quantified and ranked in order of importance. Air–sea fluxes dominate the budget so that, at zero order, the magnitude and sense of the overturning circulation can be inferred from air–sea fluxes, with interior mixing playing a lesser role. We find that wintertime latent heat fluxes dominate the water-mass transformation rate in the interior waters of the Gulf leading to a diapycnal volume flux directed toward higher densities. In the zonal overturning cell, fluid is drawn in from the Sea of Oman through the Strait of Hormuz, transformed, and exits the Strait near the southern and bottom boundaries. Along the southern margin of the Gulf, evaporation plays an important role in the meridional overturning pattern inducing sinking there.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hajoon Song, hajsong@yonsei.ac.kr

Abstract

We diagnose the ocean’s residual overturning circulation of the Arabian Gulf in a high-resolution model and interpret it in terms of water-mass transformation processes mediated by air–sea buoyancy fluxes and interior mixing. We attempt to rationalize the complex three-dimensional flow in terms of the superposition of a zonal (roughly along axis) and meridional (transverse) overturning pattern. Rates of overturning and the seasonal cycle of air–sea fluxes sustaining them are quantified and ranked in order of importance. Air–sea fluxes dominate the budget so that, at zero order, the magnitude and sense of the overturning circulation can be inferred from air–sea fluxes, with interior mixing playing a lesser role. We find that wintertime latent heat fluxes dominate the water-mass transformation rate in the interior waters of the Gulf leading to a diapycnal volume flux directed toward higher densities. In the zonal overturning cell, fluid is drawn in from the Sea of Oman through the Strait of Hormuz, transformed, and exits the Strait near the southern and bottom boundaries. Along the southern margin of the Gulf, evaporation plays an important role in the meridional overturning pattern inducing sinking there.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hajoon Song, hajsong@yonsei.ac.kr
Save
  • Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, https://doi.org/10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessi, C. A., H. D. Hunt, and A. S. Bower, 1999: Hydrographic data from the US naval oceanographic office: Persian Gulf, Southern Red Sea, and Arabian Sea 1923-1996. Woods Hole Oceanographic Institution Tech. Rep. WHOI-99-02, 70 pp., https://www2.whoi.edu/site/bower-lab/wp-content/uploads/sites/12/2018/03/TechRpt_HydrographicDAta.pdf.

  • Alosairi, Y., and T. Pokavanich, 2017: Residence and transport time scales associated with Shatt Al-Arab discharges under various hydrological conditions estimated using a numerical model. Mar. Pollut. Bull., 118, 8592, https://doi.org/10.1016/j.marpolbul.2017.02.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alosairi, Y., J. Imberger, and R. A. Falconer, 2011: Mixing and flushing in the Persian Gulf (Arabian Gulf). J. Geophys. Res., 116, C03029, https://doi.org/10.1029/2010JC006769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azam, M. H., W. Elshorbagy, T. Ichikawa, T. Terasawa, and K. Taguchi, 2006: 3D model application to study residual flow in the Arabian Gulf. J. Waterw. Port. Coast. Ocean Eng., 132, 388400, https://doi.org/10.1061/(ASCE)0733-950X(2006)132:5(388).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azhar, M. A., M. Temimi, J. Zhao, and H. Ghedira, 2016: Modeling of circulation in the Arabian Gulf and the Sea of Oman: Skill assessment and seasonal thermohaline structure. J. Geophys. Res. Oceans, 121, 17001720, https://doi.org/10.1002/2015JC011038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, Z. Jing, and L. Wu, 2013: Water mass transformations in the southern ocean diagnosed from observations: Contrasting effects of air–sea fluxes and diapycnal mixing. J. Phys. Oceanogr., 43, 14721484, https://doi.org/10.1175/JPO-D-12-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashitialshaaer, R., K. M. Persson, and M. Aljaradin, 2011: Estimated future salinity in the Arabian Gulf, the Mediterranean Sea and the Red Sea consequences of brine discharge from desalination. Int. J. Acad. Res., 3, 133140.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., V. Hormann, R. Lumpkin, and G. R. Foltz, 2013: The response of the surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr., 43, 20082022, https://doi.org/10.1175/JPO-D-13-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of properties in a free-surface model. Ocean Modell., 6, 221244, https://doi.org/10.1016/S1463-5003(03)00009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, E. J. D., A. L. Gordon, B. Kjerfve, F. Vieira, and G. Cavalcante, 2020: Freshwater budget in the Persian (Arabian) Gulf and exchanges at the Strait of Hormuz. PLOS ONE, 15, e0233090, https://doi.org/10.1371/journal.pone.0233090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and M. R. Mazloff, 2016: The spatiotemporal structure of diabatic processes governing the evolution of subantarctic mode water in the Southern Ocean. J. Phys. Oceanogr., 46, 683710, https://doi.org/10.1175/JPO-D-14-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., T. W. Kao, and K. R. Al-Hajri, 1992: A numerical investigation of circulation in the Arabian Gulf. J. Geophys. Res., 97, 11 21911 236, https://doi.org/10.1029/92JC00841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daru, V., and C. Tenaud, 2004: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys., 193, 563594, https://doi.org/10.1016/j.jcp.2003.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge, E. W., J. Marshall, H. Song, J.-M. Campin, M. Kelley, and L. Nazarenko, 2019: Eddy compensation dampens Southern Ocean sea surface temperature response to westerly wind trends. Geophys. Res. Lett., 46, 43654377, https://doi.org/10.1029/2019GL082758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G., and S. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass formation and the surface buoyancy flux, with application to Phillips’ Red Sea model. J. Phys. Oceanogr., 25, 16961705, https://doi.org/10.1175/1520-0485(1995)025<1696:TRBWMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosseinibalam, F., S. Hassanzadeh, and A. Rezaei-Latifi, 2011: Three-dimensional numerical modeling of thermohaline and wind-driven circulations in the Persian Gulf. Appl. Math. Model., 35, 58845902, https://doi.org/10.1016/j.apm.2011.05.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ibrahim, H. D., and E. A. B. Eltahir, 2019: Impact of brine discharge from seawater desalination plants on Persian/Arabian Gulf salinity. J. Environ. Eng., 145, 04019084, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., F. Yao, D. B. Olson, S. A. Josey, J. P. Grist, and D. A. Smeed, 2003: Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res., 108, 3391, https://doi.org/10.1029/2003JC001881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., and M. Sadrinasab, 2006: The circulation of the Persian Gulf: A numerical study. Ocean Sci., 2, 2741, https://doi.org/10.5194/os-2-27-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and A. G. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 317–336, https://doi.org/10.1016/S0074-6142(01)80126-1.

    • Crossref
    • Export Citation
  • Large, W. G., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madani, L., A. Bidokhti, and M. Ezam, 2012: Estimation of salinity, heat and buoyancy budgets of the inflow coastal current into the Persian Gulf from the Strait of Hormuz. Int. J. Mar. Sci. Eng., 2, 107114.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, https://doi.org/10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Toulouse, France, 13–21, https://www.mercator-ocean.fr/wp-content/uploads/2015/06/lettre_31_en.pdf.

  • Nishikawa, S., H. Tsujino, K. Sakamoto, and H. Nakano, 2013: Diagnosis of water mass transformation and formation rates in a high-resolution GCM of the North Pacific. J. Geophys. Res. Oceans, 118, 10511069, https://doi.org/10.1029/2012JC008116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noori, R., F. Tian, R. Berndtsson, M. R. Abbasi, M. V. Naseh, A. Modabberi, A. Soltani, and B. Kløve, 2019: Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PLOS ONE, 14, e0212790, https://doi.org/10.1371/journal.pone.0212790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patlakas, P., C. Stathopoulos, H. Flocas, C. Kalogeri, and G. Kallos, 2019: Regional climatic features of the Arabian Peninsula. Atmosphere, 10, 220, https://doi.org/10.3390/atmos10040220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinardi, N., P. Cessi, F. Borile, and C. L. P. Wolfe, 2019: The Mediterranean Sea overturning circulation. J. Phys. Oceanogr., 49, 16991721, https://doi.org/10.1175/JPO-D-18-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pous, S., X. J. Carton, and P. Lazure, 2013: A process study of the wind-induced circulation in the Persian Gulf. Open J. Mar. Sci., 3, 27160, https://doi.org/10.4236/ojms.2013.31001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pous, S., P. Lazure, and X. Carton, 2015: A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Cont. Shelf Res., 94, 5570, https://doi.org/10.1016/j.csr.2014.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, M. R., 1993: Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Mar. Pollut. Bull., 27, 3559, https://doi.org/10.1016/0025-326X(93)90007-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in drake passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadrinasab, M., and J. Kämpf, 2004: Three-dimensional flushing times of the Persian Gulf. Geophys. Res. Lett., 31, L24301, https://doi.org/10.1029/2004GL020425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirvani, A., M. J. Nazemosadat, and E. Kahya, 2015: Analyses of the Persian Gulf sea surface temperature: Prediction and detection of climate change signals. Arab. J. Geosci., 8, 21212130, https://doi.org/10.1007/s12517-014-1278-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshi, A. Köhl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: Estimating air–sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, https://doi.org/10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Swift, S. A., and A. S. Bower, 2003: Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res., 108, 3004, https://doi.org/10.1029/2002JC001360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoppil, P. G., and P. J. Hogan, 2010a: A modeling study of circulation and eddies in the Persian Gulf. J. Phys. Oceanogr., 40, 21222134, https://doi.org/10.1175/2010JPO4227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoppil, P. G., and P. J. Hogan, 2010b: Persian Gulf response to a wintertime shamal wind event. Deep-Sea Res. I, 57, 946955, https://doi.org/10.1016/j.dsr.2010.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L.-L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A Modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16, 680693, https://doi.org/10.1175/1520-0485(1986)016<0680:OTROIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasou, P., V. Vervatis, G. Krokos, I. Hoteit, and S. Sofianos, 2020: Variability of water exchanges through the Strait of Hormuz. Ocean Dyn., 70, 10531065, https://doi.org/10.1007/s10236-020-01384-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, https://doi.org/10.3402/tellusa.v34i2.10801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Fu, B. Qiu, D. Menemenlis, J. Farrar, Y. Chao, A. Thompson, and M. Flexas, 2018: An observing system simulation experiment for the calibration and validation of the surface water ocean topography sea surface height measurement using in situ platforms. J. Atmos. Oceanic Technol., 35, 281297, https://doi.org/10.1175/JTECH-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, P., and E. A. B. Eltahir, 2015: Estimation of the heat and water budgets of the Persian (Arabian) Gulf using a regional climate model. J. Climate, 28, 50415062, https://doi.org/10.1175/JCLI-D-14-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, F., 2008: Water mass formation and circulation in the Persian Gulf and water exchange with the Indian Ocean. Ph.D. thesis, University of Miami, 144 pp., https://scholarship.miami.edu/esploro/outputs/doctoral/Water-Mass-Formation-and-Circulation-in-the-Persian-Gulf-and-Water-Exchange-with-the-Indian-Ocean/991031447174202976.

  • Yao, F., and W. E. Johns, 2010: A HYCOM modeling study of the Persian Gulf: 2. Formation and export of Persian Gulf Water. J. Geophys. Res., 115, C11018, https://doi.org/10.1029/2009JC005788.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 356 0 0
Full Text Views 847 344 26
PDF Downloads 629 230 24