• Babin, A., A. Mahalov, B. Nicolaenko, and Y. Zhou, 1997: On the asymptotic regimes and the strongly stratified limit of rotating boussinesq equations. Theor. Comput. Fluid Dyn., 9, 223251, https://doi.org/10.1007/s001620050042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babin, A., A. Mahalov, and B. Nicolaenko, 2000: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Appl. Math. Lett., 13, 5157, https://doi.org/10.1016/S0893-9659(99)00208-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, K. G. Speer, and R. Ferrari, 2021: Relative dispersion in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 51, 553574, https://doi.org/10.1175/JPO-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. Winters, and J. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, https://doi.org/10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F., and J. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodner, A. S., and B. Fox-Kemper, 2020: A breakdown in potential vorticity estimation delineates the submesoscale-to-turbulence boundary in large eddy simulations. J. Adv. Model. Earth Syst., 12, e2020MS002049, https://doi.org/10.1029/2020MS002049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boussinesq, J., 1877: Essai sur la théorie des eaux courantes. C. R. Acad. Sci., 23, 164.

  • Brunner-Suzuki, A.-M. E. G., M. Sundermeyer, and M.-P. Lelong, 2012: Vortex stability in a large-scale internal wave shear. J. Phys. Oceanogr., 42, 16681683, https://doi.org/10.1175/JPO-D-11-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner-Suzuki, A.-M. E. G., M. A. Sundermeyer, and M.-P. Lelong, 2014: Upscale energy transfer by the vortical mode and internal waves. J. Phys. Oceanogr., 44, 24462469, https://doi.org/10.1175/JPO-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., N. Grisouard, and M. Holmes-Cerfon, 2013: Strong particle dispersion by weakly dissipative random internal waves. J. Fluid Mech., 719, R4, https://doi.org/10.1017/jfm.2013.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1948: On the scale of atmospheric motions. Geofys. Publ., 17 (2), 117.

  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2004: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16, 25922603, https://doi.org/10.1063/1.1752928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Early, J. J., M. P. Lelong, and M. A. Sundermeyer, 2021: A generalized wave-vortex decomposition for rotating Boussinesq flows with arbitrary stratification. J. Fluid Mech., 912, A32, https://doi.org/10.1017/jfm.2020.995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Embid, P. F., and A. J. Majda, 1996: Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity. Commun. Partial Differ. Equations, 21, 619658, https://doi.org/10.1080/03605309608821200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Embid, P. F., and A. J. Majda, 1998: Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn., 87, 150, https://doi.org/10.1080/03091929808208993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essink, S., V. Hormann, L. Centurioni, and A. Mahadevan, 2019: Can we detect submesoscale motions in drifter pair dispersion. J. Phys. Oceanogr., 49, 22372254, https://doi.org/10.1175/JPO-D-18-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J. G., and B. F. Farrell, 2018a: Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence. J. Fluid Mech., 854, 544590, https://doi.org/10.1017/jfm.2018.560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J. G., and B. F. Farrell, 2018b: Vertically sheared horizontal flow-forming instability in stratified turbulence: Analytical linear stability analysis of statistical state dynamics equilibria. J. Atmos. Sci., 75, 42014227, https://doi.org/10.1175/JAS-D-18-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamba, I., L. Smith, and M.-B. Tran, 2020: On the wave turbulence theory for stratified flows in the ocean. Math. Models Methods Appl. Sci., 30, 105137, https://doi.org/10.1142/S0218202520500037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. Munk, 1979: Internal waves in the ocean. Annu. Rev. Fluid Mech., 11, 339369, https://doi.org/10.1146/annurev.fl.11.010179.002011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 680 pp.

  • Hernández-Dueñas, G., L. M. Smith, and S. N. Stechmann, 2014: Investigation of Boussinesq dynamics using intermediate models based on wave–vortical interactions. J. Fluid Mech., 747, 247287, https://doi.org/10.1017/jfm.2014.138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes-Cerfon, M., O. Bühler, and R. Ferrari, 2011: Particle dispersion by random waves in the rotating Boussinesq system. J. Fluid Mech., 670, 150175, https://doi.org/10.1017/S0022112010005240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Kraichnan, R. H., 1973: Helical turbulence and absolute equilibrium. J. Fluid Mech., 59, 745752, https://doi.org/10.1017/S0022112073001837.

  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • Laval, J., J. McWilliams, and B. Dubrulle, 2003: Forced stratified turbulence: Successive transitions with Reynolds number. Phys. Rev. E, 68, 036308, https://doi.org/10.1103/PhysRevE.68.036308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. Watson, and C. Law, 1993: Evidence for mixing across the pycnocline from an open ocean tracer release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., T. F. Duda, M. A. Sundermeyer, and H. E. Seim, 2004: Mixing in a coastal environment: 1. A view from dye dispersion. J. Geophys. Res., 109, C10013, https://doi.org/10.1029/2003JC002194.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., 1989: Weakly nonlinear internal wave/vortical mode interactions in stably-stratified flows. Ph.D. thesis, University of Washington, 101 pp.

  • Lelong, M.-P., and J. J. Riley, 1991: Internal wave-vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 119, https://doi.org/10.1017/S0022112091003609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and T. J. Dunkerton, 1998: Inertia-gravity wave breaking in three dimensions. Part I: Convectively stable waves. J. Atmos. Sci., 55, 24732488, https://doi.org/10.1175/1520-0469(1998)055<2473:IGWBIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and M. A. Sundermeyer, 2005: Geostrophic adjustment of an isolated diapycnal mixing event and its implications for small-scale lateral dispersion. J. Phys. Oceanogr., 35, 23522367, https://doi.org/10.1175/JPO2835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and T. Sanford, 2019: Small-scale potential vorticity in the upper-ocean thermocline. J. Phys. Oceanogr., 49, 18451872, https://doi.org/10.1175/JPO-D-18-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., and E. G. Tabak, 2004: A Hamiltonian formulation for long internal waves. Physica D, 195, 106122, https://doi.org/10.1016/j.physd.2004.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, and E. G. Tabak, 2004: Energy spectra of the ocean’s internal wave field: Theory and observations. Phys. Rev. Lett., 92, 128501, https://doi.org/10.1103/PhysRevLett.92.128501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. L. Polzin, E. G. Tabak, and N. Yokoyama, 2010: Oceanic internal-wave field: Theory of scale-invariant spectra. J. Phys. Oceanogr., 40, 26052623, https://doi.org/10.1175/2010JPO4132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lvov, Y. V., K. Polzin, and N. Yokoyama, 2012: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr., 42, 669691, https://doi.org/10.1175/2011JPO4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, Vol. 9, New York University Courant Institute of Mathematical Sciences, 234 pp.

    • Crossref
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13971412, https://doi.org/10.1029/JC082i009p01397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2008: Fluid dynamics at the margin of rotational control. Environ. Fluid Mech., 8, 441449, https://doi.org/10.1007/s10652-008-9081-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, Y., and J. C. McWilliams, 1997: Evolution of isolated interior vortices in the ocean. J. Phys. Oceanogr., 27, 727748, https://doi.org/10.1175/1520-0485(1997)027<0727:EOIIVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, https://doi.org/10.1029/RG024i003p00493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarenko, S., 2011: Wave Turbulence. Lecture Notes in Physics, Vol. 825, Springer, 279 pp., https://doi.org/10.1007/978-3-642-15942-8.

    • Crossref
    • Export Citation
  • Newell, A. C., and B. Rumpf, 2011: Wave turbulence. Annu. Rev. Fluid Mech., 43, 5978, https://doi.org/10.1146/annurev-fluid-122109-160807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1982: Geophysical Fluid Dynamics. Vol. 1. Springer, 636 pp.

    • Crossref
    • Export Citation
  • Polzin, K., and R. Ferrari, 2004: Isopycnal dispersion in NATRE. J. Phys. Oceanogr., 34, 247257, https://doi.org/10.1175/1520-0485(2004)034<0247:IDIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmel, M., 2010: New models for the rotating shallow water and Boussinesq equations by subsets of mode interactions. Ph.D. thesis, University of Wisconsin–Madison, 158 pp.

  • Remmel, M., and L. Smith, 2009: New intermediate models for rotating shallow water and an investigation of the preference for anticyclones. J. Fluid Mech., 635, 321359, https://doi.org/10.1017/S0022112009007897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmel, M., J. Sukhatme, and L. M. Smith, 2010: Nonlinear inertia-gravity wave-mode interactions in three dimensional rotating stratified flows. Commun. Math. Sci., 8, 357376, https://doi.org/10.4310/CMS.2010.v8.n2.a4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remmel, M., J. Sukhatme, and L. M. Smith, 2014: Nonlinear gravity-wave interactions in stratified turbulence. Theor. Comput. Fluid Dyn., 28, 131145, https://doi.org/10.1007/s00162-013-0305-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1988: Mixing and large-scale ocean dynamics. Small-Scale Turbulence and Mixing in the Ocean. J. Nihoul and B. Jamart, Eds., Elsevier Oceanography Series, Vol. 46, Elsevier, 263–284, https://doi.org/10.1016/S0422-9894(08)70552-X.

    • Crossref
    • Export Citation
  • Rypina, I., J. Llopiz, L. Pratt, and M. Lozier, 2014: Dispersal pathways of American eel larvae from the Sargasso Sea. Limnol. Oceanogr., 59, 17041714, https://doi.org/10.4319/lo.2014.59.5.1704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1983: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, A., D. Balwada, N. Tarshish, and R. Abernathey, 2019: Modulation of lateral transport by submesoscale flows and inertia-gravity waves. J. Adv. Model. Earth Syst., 11, 10391065, https://doi.org/10.1029/2018MS001508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, L., and F. Waleffe, 2002: Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech., 451, 145168, https://doi.org/10.1017/S0022112001006309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., 1998: Studies of lateral dispersion in the ocean. Ph.D. thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program, 215 pp., https://doi.org/10.1575/1912/8852.

    • Crossref
    • Export Citation
  • Sundermeyer, M. A., and J. R. Ledwell, 2001: Lateral dispersion over the continental shelf: Analysis of dye-release experiments. J. Geophys. Res., 106, 96039621, https://doi.org/10.1029/2000JC900138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., and M.-P. Lelong, 2005: Numerical simulations of lateral dispersion by the relaxation of diapycnal mixing events. J. Phys. Oceanogr., 35, 23682386, https://doi.org/10.1175/JPO2834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., J. R. Ledwell, N. S. Oakey, and B. J. W. Greenan, 2005: Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 12451262, https://doi.org/10.1175/JPO2713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., M.-P. Lelong, E. L. Kunze, J. J. Early, and C. Wortham, 2020a: Pathways from internal-wave driven processes to vortical mode and submesoscale dispersion. Ocean Sciences Meeting, San Diego CA, Amer. Geophys. Union, Abstract PS41A-07, https://agu.confex.com/agu/osm20/meetingapp.cgi/Paper/654509.

  • Sundermeyer, M. A., D. Birch, J. R. Ledwell, M. D. Levine, S. D. Pierce, and B. T. K. Cervantes, 2020b: Dispersion in the open ocean seasonal pycnocline at scales of 1–10 km and 1–6 days. J. Phys. Oceanogr., 50, 415437, https://doi.org/10.1175/JPO-D-19-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, S., and D. Straub, 2016: Forced near-inertial motion and dissipation of low-frequency kinetic energy in a wind-driven channel flow. J. Phys. Oceanogr., 46, 7993, https://doi.org/10.1175/JPO-D-15-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J., and D. Daniel, 2020: Turbulent exchanges between near-inertial waves and balanced flows. J. Fluid Mech., 902, A7, https://doi.org/10.1017/jfm.2020.510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J., and D. Daniel, 2021: Forward flux and enhanced dissipation of geostrophic balanced energy. J. Fluid Mech., 911, A60, https://doi.org/10.1017/jfm.2020.1026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R., and W. Emery, 2014: Data Analysis Methods in Physical Oceanography. 3rd ed. Elsevier, 716 pp.

  • Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L.-L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 946 pp., https://doi.org/10.1017/9781107588417.

    • Crossref
    • Export Citation
  • Wagner, G. L., and W. R. Young, 2016: A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech., 802, 806837, https://doi.org/10.1017/jfm.2016.487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2006: The transition from geostrophic to stratified turbulence. J. Fluid Mech., 568, 89108, https://doi.org/10.1017/S0022112006002060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J.-H., and J. Vanneste, 2015: A generalized-lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, https://doi.org/10.1017/jfm.2015.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, https://doi.org/10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., V. S. Lvov, and G. Falkovich, 1992: Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer, 264 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 235 127 0
Full Text Views 212 103 20
PDF Downloads 237 102 22

Impact of Wave–Vortical Interactions on Oceanic Submesoscale Lateral Dispersion

Gerardo Hernández-DueñasaInstituto de Matemáticas, Universidad Nacional Autónoma de México–Campus Juriquilla, Querétaro, México

Search for other papers by Gerardo Hernández-Dueñas in
Current site
Google Scholar
PubMed
Close
,
M.-Pascale LelongbNorthWest Research Associates, Redmond, Washington

Search for other papers by M.-Pascale Lelong in
Current site
Google Scholar
PubMed
Close
, and
Leslie M. SmithcDepartment of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin
dDepartment of Engineering Physics, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Leslie M. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Submesoscale lateral transport of Lagrangian particles in pycnocline conditions is investigated by means of idealized numerical simulations with reduced-interaction models. Using a projection technique, the models are formulated in terms of wave-mode and vortical-mode nonlinear interactions, and they range in complexity from full Boussinesq to waves-only and vortical-modes-only (QG) models. We find that, on these scales, most of the dispersion is done by vortical motions, but waves cannot be discounted because they play an important, albeit indirect, role. In particular, we show that waves are instrumental in filling out the spectra of vortical-mode energy at smaller scales through nonresonant vortex–wave–wave triad interactions. We demonstrate that a richer spectrum of vortical modes in the presence of waves enhances the effective lateral diffusivity, relative to QG. Waves also transfer energy upscale to vertically sheared horizontal flows that are a key ingredient for internal-wave shear dispersion. In the waves-only model, the dispersion rate is an order of magnitude smaller and is attributed entirely to internal-wave shear dispersion.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gerardo Hernández-Dueñas, hernandez@im.unam.mx

Abstract

Submesoscale lateral transport of Lagrangian particles in pycnocline conditions is investigated by means of idealized numerical simulations with reduced-interaction models. Using a projection technique, the models are formulated in terms of wave-mode and vortical-mode nonlinear interactions, and they range in complexity from full Boussinesq to waves-only and vortical-modes-only (QG) models. We find that, on these scales, most of the dispersion is done by vortical motions, but waves cannot be discounted because they play an important, albeit indirect, role. In particular, we show that waves are instrumental in filling out the spectra of vortical-mode energy at smaller scales through nonresonant vortex–wave–wave triad interactions. We demonstrate that a richer spectrum of vortical modes in the presence of waves enhances the effective lateral diffusivity, relative to QG. Waves also transfer energy upscale to vertically sheared horizontal flows that are a key ingredient for internal-wave shear dispersion. In the waves-only model, the dispersion rate is an order of magnitude smaller and is attributed entirely to internal-wave shear dispersion.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gerardo Hernández-Dueñas, hernandez@im.unam.mx
Save