• Alappattu, D. P., Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, 2017: Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies. J. Geophys. Res. Oceans, 122, 64706481, https://doi.org/10.1002/2017JC012688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., and J.-P. Duvel, 2009: An analysis of tropical ocean diurnal warm layers. J. Climate, 22, 36293646, https://doi.org/10.1175/2008JCLI2598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., and Coauthors, 2017: Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ., 201, 196218, https://doi.org/10.1016/j.rse.2017.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourras, D., 2006: Comparison of five satellite-derived latent heat flux products to moored buoy data. J. Climate, 19, 62916313, https://doi.org/10.1175/JCLI3977.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, S. K. Gulev, and C. Woods, 2017: Climatologically significant effects of some approximations in the bulk parameterizations of turbulent air–sea fluxes. J. Phys. Oceanogr., 47, 528, https://doi.org/10.1175/JPO-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635, https://doi.org/10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493, https://doi.org/10.1175/2011JCLI4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and Z. Zhou, 1997: Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 102, 27 81327 824, https://doi.org/10.1029/97JC02197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., E. Nelkin, J. Ardizzone, and R. M. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17, 39733989, https://doi.org/10.1175/1520-0442(2004)017<3973:ACOLHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and D. Weitlich, 2007: Variability of tropical diurnal sea surface temperature. J. Climate, 20, 334352, https://doi.org/10.1175/JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air–sea fluxes. J. Climate, 26, 25462556, https://doi.org/10.1175/JCLI-D-12-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and J. B. Edson, 2019: Diurnal surface flux variability over western boundary currents. Geophys. Res. Lett., 46, 91749182, https://doi.org/10.1029/2019GL082826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., J. J. Benedict, N. P. Klingaman, S. J. Woolnough, and D. A. Randall, 2016: Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 121, 83508373, https://doi.org/10.1002/2016JD025098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20, 30563082, https://doi.org/10.1175/JCLI4144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996a: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996b: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., C. J. Donlon, A. Stuart-Menteth, and F. J. Wentz, 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30, 1140, https://doi.org/10.1029/2002GL016291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Iwasaki, S., M. Kubota, and H. Tomita, 2010: Evaluation of bulk method for satellite-derived latent heat flux. J. Geophys. Res., 115, C07007, https://doi.org/10.1029/2010JC006175.

    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, https://doi.org/10.1007/s10872-007-0063-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., P. Brohan, and S. F. B. Tett, 2007: A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends. Geophys. Res. Lett., 34, L05712, https://doi.org/10.1029/2006GL028920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2010: The global tropical moored buoy array. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Vol. 2, ESA Publication WPP-306, 459–480, https://doi.org/10.5270/OceanObs09.cwp.61.

    • Crossref
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and T. Spengler, 2019: Prevailing surface wind direction during air-sea heat exchange. J. Climate, 32, 56015617, https://doi.org/10.1175/JCLI-D-18-0752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, A., and J. S. Godfrey, 2005: A diagnostic model of the diurnal cycle of sea surface temperature for use in coupled ocean-atmosphere models. J. Geophys. Res., 110, C11014, https://doi.org/10.1029/2005JC002975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, A. J. Miller, and N. R. Cavanaugh, 2014: Coupled impacts of the diurnal cycle of sea surface temperature on the Madden–Julian oscillation. J. Climate, 27, 84228443, https://doi.org/10.1175/JCLI-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636, https://doi.org/10.1175/JCLI3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., 2020: The importance of relative wind speed in estimating air-sea turbulent heat fluxes in bulk formulas: Examples in the Bohai Sea. J. Atmos. Oceanic Technol., 37, 589603, https://doi.org/10.1175/JTECH-D-19-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., 2021: The importance of including sea surface current when estimating air-sea turbulent heat fluxes and wind stress in the Gulf Stream region. J. Atmos. Oceanic Technol., 38, 119138, https://doi.org/10.1175/JTECH-D-20-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., and L. Yu, 2013: How much net surface heat flux should go into the western Pacific warm pool? J. Geophys. Res. Oceans, 118, 35693585, https://doi.org/10.1002/jgrc.20246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdivieso, M., and Coauthors, 2017: An assessment of air-sea heat fluxes from ocean and coupled reanalyses. Climate Dyn., 49, 9831008, https://doi.org/10.1007/s00382-015-2843-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, B., 2006: Near-surface ocean temperature. J. Geophys. Res., 111, C02005, https://doi.org/10.1029/2004JC002689.

  • Weihs, R. R., and M. A. Bourassa, 2014: Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes. J. Geophys. Res. Oceans, 119, 41014123, https://doi.org/10.1002/2013JC009489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., X. Cao, and S. Chen, 2015: Covariations of SST and surface heat flux on 10–20 day and 30–60 day time scales over the South China Sea and western North Pacific. J. Geophys. Res. Atmos., 120, 12 48612 499, https://doi.org/10.1002/2015JD024199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Y. Jiao, Y. Wang, and X. Jia, 2020a: High-frequency wind related seasonal mean latent heat flux changes over the tropical Indo-western Pacific in El Niño and La Niña years. J. Geophys. Res. Atmos., 125, e2020JD032954, https://doi.org/10.1029/2020JD032954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Y. Wang, and Y. Jiao, 2020b: High frequency wind-related seasonal mean latent heat flux changes. Climate Dyn., 55, 32693287, https://doi.org/10.1007/s00382-020-05445-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, J., T. Lian, P. Huang, G. Huang, D. Chen, and S. F. Chen, 2021: Discrepant effects of atmospheric adjustments in shaping the spatial pattern of SST anomalies between extreme and moderate El Niños. J. Climate, 34, 52295242, https://doi.org/10.1175/JCLI-D-20-0757.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2019: Global air-sea fluxes of heat, fresh water, and momentum: Energy budget closure and unanswered questions. Annu. Rev. Mar. Sci., 11, 227248, https://doi.org/10.1146/annurev-marine-010816-060704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, H., H. Beggs, A. Ignatov, and A. Babanin, 2020: Nighttime cool skin effect observed from Infrared SST Autonomous Radiometer (ISAR) and depth temperatures. J. Atmos. Oceanic Technol., 37, 3346, https://doi.org/10.1175/JTECH-D-19-0161.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., M.-P. Hung, W. Wang, and A. Kumar, 2019: Role of SST feedback in the prediction of the boreal summer monsoon intraseasonal oscillation. Climate Dyn., 53, 38613875, https://doi.org/10.1007/s00382-019-04753-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 832 234 0
Full Text Views 469 300 48
PDF Downloads 387 195 20

Diurnal Variation in Surface Latent Heat Flux and the Effect of Diurnal Variability on the Climatological Latent Heat Flux over the Tropical Oceans

Yunwei YanaState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
bSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Yunwei Yan in
Current site
Google Scholar
PubMed
Close
,
Lei ZhangcDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
,
Xiangzhou SongdKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
eCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Xiangzhou Song in
Current site
Google Scholar
PubMed
Close
,
Guihua WangfDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Guihua Wang in
Current site
Google Scholar
PubMed
Close
, and
Changlin ChenfDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Changlin Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diurnal variation in surface latent heat flux (LHF) and the effects of diurnal variations in LHF-related variables on the climatological LHF are examined using observations from the Global Tropical Moored Buoy Array. The estimated amplitude of the climatological diurnal LHF over the Indo-Pacific warm pool and the equatorial Pacific and Atlantic cold tongues is remarkable, with maximum values exceeding 20.0 W m−2. Diurnal variability of sea surface skin temperature (SSTskin) is the primary contributor to the diurnal LHF amplitude. Because the diurnal SSTskin amplitude has an inverse relationship with surface wind speed over the tropical oceans, an inverse spatial pattern between the diurnal LHF amplitude and surface wind speed results. Resolving diurnal variations in the SSTskin and wind improves the estimate of the climatological LHF by properly capturing the daytime SSTskin and daily mean wind speed, respectively. The diurnal SSTskin-associated contribution is large over the warm pool and equatorial cold tongues where low wind speeds tend to cause strong diurnal SSTskin warming, while the magnitude associated with the diurnal winds is large over the highly dynamic environment of the intertropical convergence zone. The total diurnal contribution is about 9.0 W m−2 on average over the buoy sites. There appears to be a power function (linear) relationship between the diurnal SSTskin-associated (wind-associated) contribution and surface mean wind speed (wind speed enhancement from diurnal variability). The total contribution from diurnal variability can be estimated accurately from high-frequency surface wind measurements using these relationships.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Changlin Chen, chencl@fudan.edu.cn; Yunwei Yan, yanyunwei@sio.org.cn

Abstract

Diurnal variation in surface latent heat flux (LHF) and the effects of diurnal variations in LHF-related variables on the climatological LHF are examined using observations from the Global Tropical Moored Buoy Array. The estimated amplitude of the climatological diurnal LHF over the Indo-Pacific warm pool and the equatorial Pacific and Atlantic cold tongues is remarkable, with maximum values exceeding 20.0 W m−2. Diurnal variability of sea surface skin temperature (SSTskin) is the primary contributor to the diurnal LHF amplitude. Because the diurnal SSTskin amplitude has an inverse relationship with surface wind speed over the tropical oceans, an inverse spatial pattern between the diurnal LHF amplitude and surface wind speed results. Resolving diurnal variations in the SSTskin and wind improves the estimate of the climatological LHF by properly capturing the daytime SSTskin and daily mean wind speed, respectively. The diurnal SSTskin-associated contribution is large over the warm pool and equatorial cold tongues where low wind speeds tend to cause strong diurnal SSTskin warming, while the magnitude associated with the diurnal winds is large over the highly dynamic environment of the intertropical convergence zone. The total diurnal contribution is about 9.0 W m−2 on average over the buoy sites. There appears to be a power function (linear) relationship between the diurnal SSTskin-associated (wind-associated) contribution and surface mean wind speed (wind speed enhancement from diurnal variability). The total contribution from diurnal variability can be estimated accurately from high-frequency surface wind measurements using these relationships.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Changlin Chen, chencl@fudan.edu.cn; Yunwei Yan, yanyunwei@sio.org.cn

Supplementary Materials

    • Supplemental Materials (PDF 485.55 KB)
Save