Mesoscale, Tidal, and Seasonal/Interannual Drivers of the Weddell Sea Overturning Circulation

Andrew L. Stewart aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5861-4070
Restricted access

Abstract

The Weddell Sea supplies 40%–50% of the Antarctic Bottom Water that fills the global ocean abyss, and therefore exerts significant influence over global circulation and climate. Previous studies have identified a range of different processes that may contribute to dense shelf water (DSW) formation and export on the southern Weddell Sea continental shelf. However, the relative importance of these processes has not been quantified, which hampers prioritization of observational deployments and development of model parameterizations in this region. In this study a high-resolution (1/12°) regional model of the southern Weddell Sea is used to quantify the overturning circulation and decompose it into contributions due to multiannual mean flows, seasonal/interannual variability, tides, and other submonthly variability. It is shown that tides primarily influence the overturning by changing the melt rate of the Filchner–Ronne Ice Shelf (FRIS). The resulting ∼0.2 Sv (1 Sv ≡ 106 m3 s−1) decrease in DSW transport is comparable to the magnitude of the overturning in the FRIS cavity, but small compared to DSW export across the continental shelf break. Seasonal/interannual fluctuations exert a modest influence on the overturning circulation due to the relatively short (8-yr) analysis period. Analysis of the transient energy budget indicates that the nontidal, submonthly variability is primarily baroclinically generated eddies associated with dense overflows. These eddies play a comparable role to the mean flow in exporting dense shelf waters across the continental shelf break, and account for 100% of the transfer of heat onto the continental shelf. The eddy component of the overturning is sensitive to model resolution, decreasing by a factor of ∼2 as the horizontal grid spacing is refined from 1/3° to 1/12°.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu

Abstract

The Weddell Sea supplies 40%–50% of the Antarctic Bottom Water that fills the global ocean abyss, and therefore exerts significant influence over global circulation and climate. Previous studies have identified a range of different processes that may contribute to dense shelf water (DSW) formation and export on the southern Weddell Sea continental shelf. However, the relative importance of these processes has not been quantified, which hampers prioritization of observational deployments and development of model parameterizations in this region. In this study a high-resolution (1/12°) regional model of the southern Weddell Sea is used to quantify the overturning circulation and decompose it into contributions due to multiannual mean flows, seasonal/interannual variability, tides, and other submonthly variability. It is shown that tides primarily influence the overturning by changing the melt rate of the Filchner–Ronne Ice Shelf (FRIS). The resulting ∼0.2 Sv (1 Sv ≡ 106 m3 s−1) decrease in DSW transport is comparable to the magnitude of the overturning in the FRIS cavity, but small compared to DSW export across the continental shelf break. Seasonal/interannual fluctuations exert a modest influence on the overturning circulation due to the relatively short (8-yr) analysis period. Analysis of the transient energy budget indicates that the nontidal, submonthly variability is primarily baroclinically generated eddies associated with dense overflows. These eddies play a comparable role to the mean flow in exporting dense shelf waters across the continental shelf break, and account for 100% of the transfer of heat onto the continental shelf. The eddy component of the overturning is sensitive to model resolution, decreasing by a factor of ∼2 as the horizontal grid spacing is refined from 1/3° to 1/12°.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.24 MB)
Save
  • Abrahamsen, E. P., and Coauthors, 2019: Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation. Nat. Climate Change, 9, 742746, https://doi.org/10.1038/s41558-019-0561-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adkins, J. F., 2013: The role of deep ocean circulation in setting glacial climates. Paleoceanography, 28, 539561, https://doi.org/10.1002/palo.20046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Årthun, M., P. R. Holland, K. W. Nicholls, and D. L. Feltham, 2013: Eddy-driven exchange between the open ocean and a sub–ice shelf cavity. J. Phys. Oceanogr., 43, 23722387, https://doi.org/10.1175/JPO-D-13-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and S. Condie, 1998: Observations and modelling of Antarctic downslope flows: A review. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 2949.

    • Search Google Scholar
    • Export Citation
  • Carmack, E. C., and T. D. Foster, 1975: On the flow of water out of the Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 22, 711724, https://doi.org/10.1016/0011-7471(75)90077-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., K. J. Heywood, K. W. Nicholls, and I. Fer, 2010: Observations of the Antarctic slope undercurrent in the southeastern Weddell Sea. Geophys. Res. Lett., 37, L13601, https://doi.org/10.1029/2010GL043603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daae, K., T. Hattermann, E. Darelius, and I. Fer, 2017: On the effect of topography and wind on warm water inflow: An idealized study of the southern Weddell Sea continental shelf system. J. Geophys. Res. Oceans, 122, 26222641, https://doi.org/10.1002/2016JC012541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daae, K., E. Darelius, I. Fer, S. Østerhus, and S. Ryan, 2018: Wind stress mediated variability of the Filchner Trough overflow, Weddell Sea. J. Geophys. Res. Oceans, 123, 31863203, https://doi.org/10.1002/2017JC013579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daae, K., I. Fer, and E. Darelius, 2019: Variability and mixing of the Filchner overflow plume on the continental slope, Weddell Sea. J. Phys. Oceanogr., 49, 320, https://doi.org/10.1175/JPO-D-18-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darelius, E., and J.-B. Sallee, 2018: Seasonal outflow of ice shelf water across the front of the Filchner ice shelf, Weddell Sea, Antarctica. Geophys. Res. Lett., 45, 35773585, https://doi.org/10.1002/2017GL076320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darelius, E., L. Smedsrud, S. Østerhus, A. Foldvik, and T. Gammelsrød, 2009: Structure and variability of the Filchner overflow plume. Tellus, 61A, 446464, https://doi.org/10.1111/j.1600-0870.2009.00391.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darelius, E., K. Makinson, K. Daae, I. Fer, P. R. Holland, and K. W. Nicholls, 2014: Hydrography and circulation in the Filchner depression, Weddell Sea, Antarctica. J. Geophys. Res. Oceans, 119, 57975814, https://doi.org/10.1002/2014JC010225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darelius, E., I. Fer, and K. W. Nicholls, 2016: Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun., 7, 12300, https://doi.org/10.1038/ncomms12300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., S. R. Springer, and D. M. Oxilia, 2000: Orthobaric density: A thermodynamic variable for ocean circulation studies. J. Phys. Oceanogr., 30, 28302852, https://doi.org/10.1175/1520-0485(2001)031<2830:>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., X. S. Asay-Davis, B. K. Galton-Fenzi, P. R. Holland, A. Jenkins, and R. Timmermann, 2016: Modeling ice shelf/ocean interaction in Antarctica: A review. Oceanography, 29, 144153, https://doi.org/10.5670/oceanog.2016.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429442, https://doi.org/10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döös, K., J. Nilsson, J. Nycander, L. Brodeau, and M. Ballarotta, 2012: The world ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460, https://doi.org/10.1175/JPO-D-11-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., A. K. Morrison, S. M. Griffies, I. Frenger, H. Zanowski, and M. Winton, 2017: Preconditioning of the Weddell Sea polynya by the ocean mesoscale and dense water overflows. J. Climate, 30, 77197737, https://doi.org/10.1175/JCLI-D-16-0586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 1999: Neutral density revisited. Deep-Sea Res. II, 46, 3354, https://doi.org/10.1016/S0967-0645(98)00113-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., R. G. Peterson, G. Rohardt, P. Schlosser, and R. Bayer, 1994: Suppression of bottom water formation in the southeastern Weddell Sea. Deep-Sea Res. I, 41, 389411, https://doi.org/10.1016/0967-0637(94)90010-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., E. Darelius, and K. B. Daae, 2016: Observations of energetic turbulence on the Weddell Sea continental slope. Geophys. Res. Lett., 43, 760766, https://doi.org/10.1002/2015GL067349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foldvik, A., and T. Gammelsrød, 1988: Notes on Southern Ocean hydrography, sea-ice and bottom water formation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 67, 317, https://doi.org/10.1016/0031-0182(88)90119-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foldvik, A., and Coauthors, 2004: Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res., 109, C02015, https://doi.org/10.1029/2003JC002008.

    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 23, 301317, https://doi.org/10.1016/0011-7471(76)90872-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, J. A., K. J. Heywood, C. P. Chavanne, and P. R. Holland, 2013: Seasonal variability of water masses and transport on the Antarctic continental shelf and slope in the southeastern Weddell Sea. J. Geophys. Res. Oceans, 118, 22012214, https://doi.org/10.1002/jgrc.20174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., S. M. Griffies, D. Iudicone, R. Marsh, A. J. G. Nurser, and J. D. Zika, 2019: The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci., 11, 271305, https://doi.org/10.1146/annurev-marine-010318-095421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosfeld, K., and R. Gerdes, 1998: Circulation beneath the Filchner Ice Shelf, Antarctica, and its sensitivity to changes in the oceanic environment: A case-study. Ann. Glaciol., 27, 99104, https://doi.org/10.3189/1998AoG27-1-99-104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haid, V., and R. Timmermann, 2013: Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. J. Geophys. Res. Oceans, 118, 26402652, https://doi.org/10.1002/jgrc.20133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., J.-B. Sallée, N. C. Jourdain, P. Mathiot, C. Rousset, G. Madec, J. Deshayes, and T. Hattermann, 2020: The role of tides in ocean–ice-shelf interactions in the southwestern Weddell Sea. J. Geophys. Res. Oceans, 125, e2019JC015847, https://doi.org/10.1029/2019JC015847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2019: Are the near-Antarctic easterly winds weakening in response to enhancement of the Southern Annular Mode? J. Climate, 32, 18951918, https://doi.org/10.1175/JCLI-D-18-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2020: Bistability of the Filchner-Ronne Ice Shelf Cavity circulation and basal melt. J. Geophys. Res. Oceans, 125, e2019JC015848, https://doi.org/10.1029/2019JC015848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., and A. Beckmann, 2001: The Southern Ocean: A ventilation contributor with multiple sources. Geophys. Res. Lett., 28, 29272930, https://doi.org/10.1029/2001GL013054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., P. Spence, O. A. Saenko, and S. M. Downes, 2017: The energetics of Southern Ocean upwelling. J. Phys. Oceanogr., 47, 135153, https://doi.org/10.1175/JPO-D-16-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, B., 2010: Physical Oceanography During ICEFLOW Cruise IC92. Lamont-Doherty Earth Observatory of Columbia University, PANGAEA, accessed 13 October 2020, https://doi.org/10.1594/PANGAEA.742743.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 2004: Bottom water production and its links with the thermohaline circulation. Antarct. Sci., 16, 427437, https://doi.org/10.1017/S095410200400224X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic deep water volumes. J. Geophys. Res., 113, C05027, https://doi.org/10.1029/2007JC004477.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., P. Mathiot, N. Merino, G. Durand, J. Le Sommer, P. Spence, P. Dutrieux, and G. Madec, 2017: Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res. Oceans, 122, 25502573, https://doi.org/10.1002/2016JC012509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullion, L., and Coauthors, 2014: The contribution of the Weddell Gyre to the lower limb of the global overturning circulation. J. Geophys. Res. Oceans, 119, 33573377, https://doi.org/10.1002/2013JC009725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., T. J. McDougall, and D. R. Jackett, 2009: A new method for forming approximately neutral surfaces. Ocean Sci., 5, 155172, https://doi.org/10.5194/os-5-155-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, Y., G. J. Stanley, T. J. McDougall, and P. M. Barker, 2020: A pressure-invariant neutral density variable for the world’s oceans. J. Phys. Oceanogr., 50, 35853604, https://doi.org/10.1175/JPO-D-19-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., R. W. Hallberg, and J. B. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, https://doi.org/10.1016/j.ocemod.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. J. McGillicuddy Jr., M. S. Dinniman, and J. M. Klinck, 2017: Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf. J. Mar. Syst., 166, 108119, https://doi.org/10.1016/j.jmarsys.2016.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res., 113, C08043, https://doi.org/10.1029/2007JC004368.

    • Search Google Scholar
    • Export Citation
  • Losch, M., D. Menemenlis, J.-M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33, 129144, https://doi.org/10.1016/j.ocemod.2009.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Makinson, K., and K. W. Nicholls, 1999: Modeling tidal currents beneath Filchner–Ronne Ice Shelf and on the adjacent continental shelf: Their effect on mixing and transport. J. Geophys. Res., 104, 13  44913 465, https://doi.org/10.1029/1999JC900008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malyarenko, A., A. J. Wells, P. J. Langhorne, N. J. Robinson, M. J. M. Williams, and K. W. Nicholls, 2020: A synthesis of thermodynamic ablation at ice-ocean interfaces from theory, observations and models. Ocean Modell., 154, 101692, https://doi.org/10.1016/j.ocemod.2020.101692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marques, G. M., K. Padman, S. R. Springer, S. L. Howard, and T. M. Özgökmen, 2014: Topographic vorticity waves forced by Antarctic dense shelf water outflows. Geophys. Res. Lett., 41, 12471254, https://doi.org/10.1002/2013GL059153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, https://doi.org/10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moholdt, G., L. Padman, and H. A. Fricker, 2014: Basal mass budget of Ross and Filchner-Ronne ice shelves, Antarctica, derived from Lagrangian analysis of ICESat altimetry. J. Geophys. Res. Earth Surf., 119, 23612380, https://doi.org/10.1002/2014JF003171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, M. H. England, and P. Spence, 2020: Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv., 6, eaav2516, https://doi.org/10.1126/sciadv.aav2516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, R. D., T. Hattermann, S. L. Howard, and L. Padman, 2018: Tidal influences on a future evolution of the Filchner–Ronne Ice Shelf cavity in the Weddell Sea, Antarctica. Cryosphere, 12, 453476, https://doi.org/10.5194/tc-12-453-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, R. D., and A. L. Gordon, 1995: Circulation and transport of water along the western Weddell Sea margin. J. Geophys. Res., 100, 18 50318 515, https://doi.org/10.1029/95JC00965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naughten, K. A., A. Jenkins, P. R. Holland, R. I. Mugford, K. W. Nicholls, and D. R. Munday, 2019: Modeling the influence of the Weddell Polynya on the Filchner–Ronne Ice Shelf Cavity. J. Climate, 32, 52895303, https://doi.org/10.1175/JCLI-D-19-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., E. L. McDonagh, D. P. Stevens, K. J. Heywood, and R. J. Sanders, 2002: On the export of Antarctic Bottom Water from the Weddell Sea. Deep-Sea Res. II, 49, 47154742, https://doi.org/10.1016/S0967-0645(02)00156-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., and Coauthors, 2017: Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature, 542, 219222, https://doi.org/10.1038/nature20825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., C. M. Bitz, F. O. Bryan, R. Abernathey, and P. R. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 25972619, https://doi.org/10.1175/JCLI-D-15-0513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., S. Østerhus, K. Makinson, and M. Johnson, 2001: Oceanographic conditions south of Berkner Island, beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophys. Res., 106, 11 48111 492, https://doi.org/10.1029/2000JC000350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., L. Padman, M. Schröder, R. A. Woodgate, A. Jenkins, and S. Østerhus, 2003: Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. J. Geophys. Res., 108, 3260, https://doi.org/10.1029/2002JC001713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., L. Boehme, M. Biuw, and M. Fedak, 2008: Wintertime ocean conditions over the southern Weddell Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L21605, https://doi.org/10.1029/2008GL035742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., S. Østerhus, K. Makinson, T. Gammelsrød, and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and M.-M. Lee, 2004: Isopycnal averaging at constant height. Part II: Relating to the residual streamfunction in Eulerian space. J. Phys. Oceanogr., 34, 27402755, https://doi.org/10.1175/JPO2650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., and Coauthors, 2013: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci., 6, 235240, https://doi.org/10.1038/ngeo1738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., S. S. Jacobs, A. L. Gordon, and M. Visbeck, 2001: Cooling and ventilating the abyssal ocean. Geophys. Res. Lett., 28, 29232926, https://doi.org/10.1029/2001GL012830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Østerhus, S., 2006: Physical oceanography during ANDENES Cruise NARE85. Geophysical Institute, University of Bergen, PANGAEA, accessed 13 October 2020, https://doi.org/10.1594/PANGAEA.527497.

    • Search Google Scholar
    • Export Citation
  • Padman, L., H. A. Fricker, R. Coleman, S. Howard, and L. Erofeeva, 2002: A new tide model for the Antarctic ice shelves and seas. Ann. Glaciol., 34, 247254, https://doi.org/10.3189/172756402781817752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., S. L. Howard, A. H. Orsi, and R. D. Muench, 2009: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Res. II, 56, 818834, https://doi.org/10.1016/j.dsr2.2008.10.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, https://doi.org/10.1175/JPO-2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through amps. Bull. Amer. Meteor. Soc., 93, 16991712, https://doi.org/10.1175/BAMS-D-11-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, R., 2001: Internal tides and baroclinicity in the southern Weddell Sea: 1. Model description. J. Geophys. Res., 106, 27 00127 016, https://doi.org/10.1029/2000JC000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaffer, J., R. Timmermann, J. E. Arndt, D. Steinhage, and T. Kanzow, 2014: RTopo-2: A global dataset of ice sheet topography, cavity geometry and ocean bathymetry to study ice-ocean interaction in Northeast Greenland. EPIC.awi.de, accessed REKLIM Conference, Berlin, Germany, Alfred Wegener Institute, https://hdl.handle.net/10013/epic.45344.

    • Search Google Scholar
    • Export Citation
  • Schodlok, M. P., D. Menemenlis, and E. J. Rignot, 2016: Ice shelf basal melt rates around Antarctica from simulations and observations. J. Geophys. Res. Oceans, 121, 10851109, https://doi.org/10.1002/2015JC011117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silvano, A., and Coauthors, 2020: Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci., 13, 780786, https://doi.org/10.1038/s41561-020-00655-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., S. M. Griffies, M. H. England, A. M. Hogg, O. A. Saenko, and N. C. Jourdain, 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett., 41, 46014610, https://doi.org/10.1002/2014GL060613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., R. M. Holmes, A. M. Hogg, S. M. Griffies, K. D. Stewart, and M. H. England, 2017: Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Climate Change, 7, 595603, https://doi.org/10.1038/nclimate3335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves. J. Phys. Oceanogr., 43, 5164, https://doi.org/10.1175/JPO-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, G. J., 2019: Neutral surface topology. Ocean Modell., 138, 88106,