• Arruda, W. Z., and D. Nof, 2003: The Mindanao and Halmahera eddies—Twin eddies induced by nonlinearities. J. Phys. Oceanogr., 33, 28152830, https://doi.org/10.1175/1520-0485(2003)033<2815:TMAHEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., and R. Lukas, 1994: The southward intrusion of North Pacific intermediate water along the Mindanao coast. J. Phys. Oceanogr., 24, 141154, https://doi.org/10.1175/1520-0485(1994)024<0141:TSIONP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cowley, R., B. Heaney, S. Wijffels, L. Pender, J. Sprintall, S. Kawamoto, and R. Molcard, 2008: INSTANT Sunda data report description and quality control. CSIRO, 288 pp., http://www.marine.csiro.au/~cow074/INSTANTdataQC_v4.pdf.

  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., and Coauthors, 2010: Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. J. Geophys. Res., 115, C12020, https://doi.org/10.1029/2010JC006225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ffield, A., and A. L. Gordon, 1996: Tide mixing signatures in the Indonesian Seas. J. Phys. Oceanogr., 26, 19241937, https://doi.org/10.1175/1520-0485(1996)026<1924:TMSITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, R., R. Lukas, F. M. Bingham, M. J. Warner, and R. H. Gammon, 1994: The western equatorial Pacific: A water mass crossroads. J. Geophys. Res., 99, 25 06325 080, https://doi.org/10.1029/94JC02277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 2005: Oceanography of the Indonesian seas and their throughflow. Oceanography, 18, 1427, https://doi.org/10.5670/oceanog.2005.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and R. Fine, 1996: Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature, 379, 146149, https://doi.org/10.1038/379146a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 33253328, https://doi.org/10.1029/1999GL002340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, A. Ffield, B. A. Huber, W. Pranowo, and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, https://doi.org/10.1029/2008GL036372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlbut, and T. R. Adi, 2012: South China Sea throughflow impact on the Indonesian throughflow. Geophys. Res. Lett., 39, L11602, https://doi.org/10.1029/2012GL052021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and Coauthors, 2019: Makassar Strait through flow seasonal and interannual variability: An overview. J. Geophys. Res. Oceans, 124, 37243736, https://doi.org/10.1029/2018JC014502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., and Coauthors, 2019: Interannual variability of the Sulawesi Sea circulation forced by Indo-Pacific planetary waves. J. Geophys. Res. Oceans, 124, 16161633, https://doi.org/10.1029/2018JC014356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilahude, A. G., and A. L. Gordon, 1996: Thermohaline stratification within the Indonesian Seas. J. Geophys. Res., 101, 12 40112 409, https://doi.org/10.1029/95JC03798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., M. Aoyoma, T. Kawano, N. Hendiarti, Syaefudin, Y. Anantasena, K. Muneyama, and H. Watanabe, 1996: The water masses between Mindanao and New Guinea. J. Geophys. Res., 101, 12 39112 400, https://doi.org/10.1029/95JC03797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., H. Watanabe, B. Herunadi, M. Aoyama, and D. Hartoyo, 1999: Current variability at the Pacific entrance of the Indonesian throughflow. J. Geophys. Res., 104, 11 02111 035, https://doi.org/10.1029/1999JC900033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., E. Firing, P. Hacker, A. Sulaiman, and Lukiyanto, 2001: Currents in the Celebes and Maluku Seas, February 1999. Geophys. Res. Lett., 28, 12631266, https://doi.org/10.1029/2000GL011630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashino, Y., A. Atmadipoera, Y. Kuroda, and Lukijiano, 2013: Observed features of the Halmahera and Mindanao eddies. J. Geophys. Res. Oceans, 118, 65436560, https://doi.org/10.1002/2013JC009207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuehl, J., and V. A. Sheremet, 2009: Identification of a cusp catastrophe in a gap-leaping western boundary current. J. Mar. Res., 67, 2542, https://doi.org/10.1357/002224009788597908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., D. Yuan, and H. Zhou, 2018: Water masses in the far western equatorial Pacific during the winters of 2010 and 2012. J. Oceanol. Limnol., 36, 14591474, https://doi.org/10.1007/s00343-018-6068-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Coauthors, 2020: Moored observations of transport and variability of Halmahera Sea currents. J. Phys. Oceanogr., 50, 471488, https://doi.org/10.1175/JPO-D-19-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, E., R. Lukas, R. Fine, E. Firing, S. J. Godfrey, G. Meyers, and M. Tsuchiya, 1987: The western equatorial Pacific Ocean circulation study. Nature, 330, 533537, https://doi.org/10.1038/330533a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luick, J. L., and G. R. Cresswell, 2001: Current measurements in the Maluku Sea. J. Geophys. Res., 106, 13 95313 958, https://doi.org/10.1029/2000JC000694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., E. Firing, P. Hacker, P. L. Richardson, C. A. Collins, R. Fine, and R. Gammon, 1991: Observations of the Mindanao current during the western equatorial Pacific Ocean circulation study. J. Geophys. Res., 96, 70897104, https://doi.org/10.1029/91JC00062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, H., Y. Qi, B. Qiu, X. Cheng, and X. Wu, 2019: Influence of an island on hysteresis of a western boundary current flowing across a gap. J. Phys. Oceanogr., 49, 13531366, https://doi.org/10.1175/JPO-D-18-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., M. Mao, and Y. Kashino, 1999: Intraseasonal variability in the Indo-Pacific throughflow and the regions surrounding the Indonesian seas. J. Phys. Oceanogr., 29, 15991618, https://doi.org/10.1175/1520-0485(1999)029<1599:IVITIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, B. Powell, P. Colin, D. Rudnick, and M. Schönau, 2019: Nonlinear short-term upper ocean circulation variability. Oceanography, 32, 2231, https://doi.org/10.5670/oceanog.2019.408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and T. Yamagata, 1999: A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29, 14881505, https://doi.org/10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Q., Y. Li, F. Wang, L. Song, C. Liu, and F. Zhai, 2018: Seasonality of the Mindanao Current/Undercurrent system. J. Geophys. Res. Oceans, 123, 11051122, https://doi.org/10.1002/2017JC013474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathyendranath, S., and Coauthors, 2019: An ocean-colour time series for use in climate studies: The experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors, 19, 4285, https://doi.org/10.3390/s19194285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheremet, V. A., 2001: Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr., 31, 12471259, https://doi.org/10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, X., D. Yuan, and Z. Wang, 2019: Hysteresis of a periodic or leaking western boundary current flowing by a gap. Acta Oceanol. Sin., 38, 9096, https://doi.org/10.1007/s13131-018-1251-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., and Y. T. Song, 2015: Indonesian throughflow proxy from satellite altimeters and gravimeters. J. Geophys. Res. Oceans, 120, 28442855, https://doi.org/10.1002/2014JC010382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., G. Fang, I. Soesilo, Q. Zheng, F. Qiao, Z. Wei, and B. Sulistyo, 2010: New surveys of a branch of the Indonesian throughflow. Eos, Trans. Amer. Geophys. Union, 91, 261263, https://doi.org/10.1029/2010EO300002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., A. Ffield, A. Gordon, and R. Adi, 2012: Variability of Indonesian throughflow within Makassar Strait, 2004–2009. J. Geophys. Res., 117, C09013, https://doi.org/10.1029/2012JC008096.

    • Search Google Scholar
    • Export Citation
  • Talley, L., 1993: Distribution and formation of North Pacific Intermediate Water. J. Phys. Oceanogr., 23, 517537, https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1991: Flow path of Antarctic intermediate water in the western equatorial South Pacific Ocean. Deep-Sea Res. I, 38A, S273S279, https://doi.org/10.1016/S0198-0149(12)80013-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ueki, I., Y. Kashino, and Y. Kuroda, 2003: Observation of current variations off the New Guinea coast including the 1997–1998 El Niño period and their relationship with Sverdrup transport. J. Geophys. Res., 108, 3243, https://doi.org/10.1029/2002JC001611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Storch, J.-S., H. Haak, E. Hertwig, and I. Fast, 2016: Vertical heat and salt fluxes due to resolved and parameterized meso-scale eddies. Ocean Modell., 108, 119, https://doi.org/10.1016/j.ocemod.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2012: Nonlinear dynamics of two western boundary currents colliding at a gap. J. Phys. Oceanogr., 42, 20302040, https://doi.org/10.1175/JPO-D-12-05.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2014: Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. J. Phys. Oceanogr., 44, 18731885, https://doi.org/10.1175/JPO-D-13-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., D. Yuan, and Y. Hou, 2010: Effect of meridional wind on gap-leaping western boundary current. Chin. J. Oceanol. Limnol., 28, 354358, https://doi.org/10.1007/s00343-010-9281-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., Y. Li, Y. Zhang, and D. Hu, 2013: The subsurface water in the North Pacific tropical gyre. Deep-Sea Res., 75, 7892, https://doi.org/10.1016/j.dsr.2013.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., and R. Li, 2008: Dynamics of eddy-induced Kuroshio variability in Luzon Strait (in Chinese). J. Trop. Oceanogr., 27, 19.

  • Yuan, D., and Z. Wang, 2011: Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies. J. Phys. Oceanogr., 41, 878888, https://doi.org/10.1175/2010JPO4489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Coauthors, 2018: Observed transport variations in the Maluku Channel of the Indonesian Seas associated with western boundary current changes. J. Phys. Oceanogr., 48, 18031813, https://doi.org/10.1175/JPO-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., X. Song, Y. Yang, and W. Dewar, 2019: Dynamics of mesoscale eddies interacting with a western boundary current flowing by a gap. J. Geophys. Res. Oceans, 124, 41174132, https://doi.org/10.1029/2019JC014949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., J. Wu, F. Wang, S. Hu, Q. Wang, F. Jia, F. Wang, and D. Hu, 2020: Seasonal and interannual variability of the currents off the New Guinea coast from mooring measurements. J. Geophys. Res. Oceans, 125, e2020JC016242, https://doi.org/10.1029/2020JC016242.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 18 18 18
Full Text Views 10 10 10
PDF Downloads 9 9 9

Moored Observations of Currents and Water Mass Properties between Talaud and Halmahera Islands at the Entrance of the Indonesian Seas

View More View Less
  • 1 aInstitute of Oceanology, Key Laboratory of Ocean Circulation and Waves, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • | 2 bFirst Institute of Oceanography, Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
  • | 3 cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China
  • | 4 dPilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
  • | 5 eUniversity of Chinese Academy of Sciences, Beijing, China
  • | 6 fResearch Center for Oceanography-National Research and Innovation Agency (RCO-BRIN), Jakarta, Indonesia
Restricted access

Abstract

The currents and water mass properties at the Pacific entrance of the Indonesian seas are studied using measurements of three subsurface moorings deployed between the Talaud and Halmahera Islands. The moored current meter data show northeastward mean currents toward the Pacific Ocean in the upper 400 m during the nearly 2-yr mooring period, with the maximum velocity in the northern part of the channel. The mean transport between 60- and 300-m depths is estimated to be 10.1–13.2 Sv (1 Sv ≡ 106 m3 s−1) during 2016–17, when all three moorings have measurements. The variability of the along-channel velocity is dominated by low-frequency signals (periods > 150 days), with northeastward variations in boreal winter and southwestward variations in summer in the superposition of the annual and semiannual harmonics. The current variations evidence the seasonal movement of the Mindanao Current retroflection, which is supported by satellite sea level and ocean color data, showing a cyclonic intrusion into the northern Maluku Sea in boreal winter whereas a leaping path occurs north of the Talaud Islands in summer. During Apri–July, the moored CTDs near 200 m show southwestward currents carrying the salty South Pacific Tropical Water into the Maluku Sea.

Publisher's Note: This article was revised on 22 December 2021 to correct multiple mistakes with the authors' affiliations when originally published. The first and second listed affiliations above share the first position.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongliang Yuan, dyuan@fio.org.cn

Abstract

The currents and water mass properties at the Pacific entrance of the Indonesian seas are studied using measurements of three subsurface moorings deployed between the Talaud and Halmahera Islands. The moored current meter data show northeastward mean currents toward the Pacific Ocean in the upper 400 m during the nearly 2-yr mooring period, with the maximum velocity in the northern part of the channel. The mean transport between 60- and 300-m depths is estimated to be 10.1–13.2 Sv (1 Sv ≡ 106 m3 s−1) during 2016–17, when all three moorings have measurements. The variability of the along-channel velocity is dominated by low-frequency signals (periods > 150 days), with northeastward variations in boreal winter and southwestward variations in summer in the superposition of the annual and semiannual harmonics. The current variations evidence the seasonal movement of the Mindanao Current retroflection, which is supported by satellite sea level and ocean color data, showing a cyclonic intrusion into the northern Maluku Sea in boreal winter whereas a leaping path occurs north of the Talaud Islands in summer. During Apri–July, the moored CTDs near 200 m show southwestward currents carrying the salty South Pacific Tropical Water into the Maluku Sea.

Publisher's Note: This article was revised on 22 December 2021 to correct multiple mistakes with the authors' affiliations when originally published. The first and second listed affiliations above share the first position.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongliang Yuan, dyuan@fio.org.cn
Save