3D Structure of Striations in the North Pacific

Yu Zhang aSouth China Sea Marine Prediction Center, State Oceanic Administration, Guangzhou, China
eKey Laboratory of Marine Environment Survey Technology and Application, Ministry of Natural Resource, Guangzhou, China

Search for other papers by Yu Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7126-2361
,
Yu Ping Guan bState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
dCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yu Ping Guan in
Current site
Google Scholar
PubMed
Close
, and
Rui Xin Huang fWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Rui Xin Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents can be found in all the world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z coordinate and σ coordinate based on 10-yr averaged Simple Ocean Data Assimilation version 3 (SODA3) data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional–vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Yu Ping Guan and Yu Zhang contributed equally to this work.

Corresponding author: Yu Ping Guan, guan@scsio.ac.cn

Abstract

Ocean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents can be found in all the world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z coordinate and σ coordinate based on 10-yr averaged Simple Ocean Data Assimilation version 3 (SODA3) data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional–vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Yu Ping Guan and Yu Zhang contributed equally to this work.

Corresponding author: Yu Ping Guan, guan@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 728.93 KB)
Save
  • Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007: The jet-stream conundrum. Science, 315, 467468, https://doi.org/10.1126/science.1131375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmadani, A., E. Concha, D. Donoso, A. Chaigneau, F. Colas, N. Maximenko, and E. Di Lorenzo, 2017: Striations and preferred eddy tracks triggered by topographic steering of the background flow in the eastern South Pacific. J. Geophys. Res. Oceans, 122, 28472870, https://doi.org/10.1002/2016JC012348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, https://doi.org/10.1017/S0022112009006375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., 39, 27112734, https://doi.org/10.1175/2009JPO4093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, J. T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, https://doi.org/10.1017/jfm.2011.345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and P. C. Cornillon, 2013: The contribution of eddies to striations in absolute dynamic topography. J. Geophys. Res. Oceans, 118, 448461, https://doi.org/10.1029/2012JC008231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., I. Kamenkovich, and P. Berloff, 2016: Eddy trains and striations in quasigeostrophic simulations and the ocean. J. Phys. Oceanogr., 46, 28072825, https://doi.org/10.1175/JPO-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., and G. R. Flierl, 2015: The contribution of striations to the eddy energy budget and mixing: Diagnostic frameworks and results in a quasigeostrophic barotropic system with mean flow. J. Phys. Oceanogr., 45, 20952113, https://doi.org/10.1175/JPO-D-14-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., E. Kestenare, F. Marin, P. Dutrieux, and E. Firing, 2017: Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: Paths and vertical structure. J. Phys. Oceanogr., 47, 23052324, https://doi.org/10.1175/JPO-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delpech, A., S. Cravatte, F. Marin, Y. Morel, E. Gronchi, and E. Kestenare, 2020: Observed tracer fields structuration by mid-depth zonal jets in the tropical Pacific. J. Phys. Oceanogr., 50, 281304, https://doi.org/10.1175/JPO-D-19-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, https://doi.org/10.1175/2007JAS2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and R. K. Scott, 2008: A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci., 65, 11051136, https://doi.org/10.1175/2007JAS2223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., H. Nakano, H.-P. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31, L13303, https://doi.org/10.1029/2004GL019691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., J. Hoemann, S. Espa, and G. D. Nitto, 2014: Anisotropic turbulence and Rossby waves in an easterly jet: An experimental study. Geophys. Res. Lett., 41, 62376243, https://doi.org/10.1002/2014GL060767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., P. L. Read, J. L. Mitchell, and P. C. Cornillon, 2019: Zonal Jets Phenomenology, Genesis, and Physics. Cambridge University Press, 504 pp.

    • Crossref
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1988: A three-layer model for the wind-driven circulation in a subtropical-subpolar basin. Part III: Potential vorticity analysis. J. Phys. Oceanogr., 18, 739752, https://doi.org/10.1175/1520-0485(1988)018<0739:ATLMFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2010: Ocean Circulation, Wind-Driven and Thermocline Processes. Cambridge University Press, 784 pp.

    • Crossref
    • Export Citation
  • Huang, R. X., 2020: Heaving, Stretching and Spicing Modes, Climate Variability in the Ocean. Higher Education Press, 391 pp.

    • Crossref
    • Export Citation
  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24, 16081622, https://doi.org/10.1175/1520-0485(1994)024<1608:TDSOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and S. Russell, 1994: Ventilation of the subtropical North Pacific. J. Phys. Oceanogr., 24, 25892605, https://doi.org/10.1175/1520-0485(1994)024<2589:VOTSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1998: The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr., 28, 11731186, https://doi.org/10.1175/1520-0485(1998)028<1173:TSOTWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, L. M., C. A. Collins, and T. M. Margolina, 2009: System of quasi-zonal jets off California revealed from satellite altimetry. Geophys. Res. Lett., 36, L03609, https://doi.org/10.1029/2008GL036327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanov, L. M., C. A. Collins, and T. M. Margolina, 2012: Detection of oceanic quasi-zonal jets from altimetry observations. J. Atmos. Oceanic Technol., 29, 11111126, https://doi.org/10.1175/JTECH-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr., 39, 13611379, https://doi.org/10.1175/2008JPO4096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatri, H., and P. Berloff, 2018: A mechanism for jet drift over topography. J. Fluid Mech., 845, 392416, https://doi.org/10.1017/jfm.2018.260.

  • Khatri, H., and P. Berloff, 2019: Tilted drifting jets over a zonally sloped topography: Effects of vanishing eddy viscosity. J. Fluid Mech., 876, 939961, https://doi.org/10.1017/jfm.2019.579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655660, https://doi.org/10.1175/1520-0493(1997)125<0655:TDCWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnichenko, O. V., N. A. Maximenko, N. Schneider, and H. Sasaki, 2010: Quasi-stationary striations in basin-scale oceanic circulation: Vorticity balance from observations and eddy-resolving model. Ocean Dyn., 60, 653666, https://doi.org/10.1007/s10236-009-0260-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., A. Czaja, and J. H. LaCasce, 2012: The emergence of zonal ocean jets under large-scale stochastic wind forcing. Geophys. Res. Lett., 39, L11606, https://doi.org/10.1029/2012GL051684.

    • Search Google Scholar
    • Export Citation
  • Portela, E., N. Kolodziejczyk, C. Vic, and V. Thierry, 2020: Physical mechanisms driving oxygen subduction in the global ocean. Geophys. Res. Lett., 47, e2020GL089040, https://doi.org/10.1029/2020GL089040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, S. Chen, and Y. Kashino, 2013a: Quasi-stationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40, 21832187, https://doi.org/10.1002/grl.50394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and H. Sasaki, 2013b: Generation of the North Equatorial Undercurrent jets by triad baroclinic Rossby wave interactions. J. Phys. Oceanogr., 43, 26822698, https://doi.org/10.1175/JPO-D-13-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, K. J., N. A. Maximenko, F. O. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, https://doi.org/10.1029/2005GL024645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlax, M. G., and D. B. Chelton, 2008: The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean. Geophys. Res. Lett., 35, L24602, https://doi.org/10.1029/2008GL035998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and L. M. Polvani, 2007: Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci., 64, 31583176, https://doi.org/10.1175/JAS4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2005: Atmospheric and Oceanic Fluid Dynamic: Fundamentals and Large-Scale Circulation. Cambridge University Press, 755 pp.

    • Crossref
    • Export Citation
  • van Sebille, E., I. Kamenkovich, and J. K. Willis, 2011: Quasi-zonal jets in 3-D Argo data of the northeast Atlantic. Geophys. Res. Lett., 38, L02606, https://doi.org/10.1029/2010GL046267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, F., J. Feng, Q. Wang, L. Zhang, S. Hu, and D. Hu, 2020: Instability in boundary layer between the North Equatorial Current and underlying zonal jets based on mooring observations. J. Oceanol. Limnol., 38, 13681381, https://doi.org/10.1007/s00343-020-0015-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., M. A. Spall, G. R. Flierl, and P. Malanotte-Rizzoli, 2012: A new mechanism for the generation of quasi-zonal jets in the ocean. Geophys. Res. Lett., 39, L10601, https://doi.org/10.1029/2012GL051861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Y. P. Guan, 2019: Striations in marginal seas and the Mediterranean Sea. Geophys. Res. Lett., 46, 27262733, https://doi.org/10.1029/2018GL081050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Guan, Z. Chen, H. Liu, and R. Huang, 2015: Intercomparison of one-dimensional detecting methods of unveiling the global ocean striations (in Chinese with English abstract). Acta Phys. Sin., 64, 149201, https://doi.org/10.7498/aps.64.149201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Wang, and B. Qiu, 2014: Oceanic mass transport by mesoscale eddies. Science, 345, 322324, https://doi.org/10.1126/science.1252418.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 12 0
Full Text Views 326 120 15
PDF Downloads 353 107 8