Revisit of the Occurrence of the Kuroshio Large Meander South of Japan

Bo Qiu aDepartment of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bo Qiu in
Current site
Google Scholar
PubMed
Close
and
Shuiming Chen aDepartment of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Shuiming Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A unique characteristic by the Kuroshio off the southern coast of Japan is its bimodal path variations. In contrast to its straight path that follows the coastline, the Kuroshio takes a large meander (LM) path when its axis detours southward by as much as 300 km. Since 1950, eight Kuroshio LM events took place and their occurrences appeared random. By synthesizing available in situ/satellite observations and atmospheric reanalysis product, this study seeks to elucidate processes conducive for the LM occurrence. We find neither changes in the inflow Kuroshio transport from the East China Sea nor in the downstream Kuroshio Extension dynamic state are determinant factors. Instead, intense anticyclonic eddies with transport > 20 Sv (1 Sv ≡ 106 m3 s−1) emanated from the Subtropical Countercurrent (STCC) are found to play critical roles in interacting with Kuroshio path perturbations southeast of Kyushu that generate positive relative vorticities along the coast and lead the nascent path perturbation to form a LM. Occurrence of this intense cyclonic–anticyclonic eddy interaction is favored when surface wind forcing over the STCC is anticyclonic during the positive phasing of Pacific decadal oscillations (PDOs). Such wind forcing strengthens the meridional Ekman flux convergence and enhances eddy generation by the STCC, and seven of the past eight LM events are found to be preceded by 1–2 years by the persistent anticyclonic wind forcings over the STCC. Rather than a fully random phenomenon, we posit that the LM occurrence is regulated by regional wind forcing with a positive PDO imprint.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Qiu, bo@soest.hawaii.edu

Abstract

A unique characteristic by the Kuroshio off the southern coast of Japan is its bimodal path variations. In contrast to its straight path that follows the coastline, the Kuroshio takes a large meander (LM) path when its axis detours southward by as much as 300 km. Since 1950, eight Kuroshio LM events took place and their occurrences appeared random. By synthesizing available in situ/satellite observations and atmospheric reanalysis product, this study seeks to elucidate processes conducive for the LM occurrence. We find neither changes in the inflow Kuroshio transport from the East China Sea nor in the downstream Kuroshio Extension dynamic state are determinant factors. Instead, intense anticyclonic eddies with transport > 20 Sv (1 Sv ≡ 106 m3 s−1) emanated from the Subtropical Countercurrent (STCC) are found to play critical roles in interacting with Kuroshio path perturbations southeast of Kyushu that generate positive relative vorticities along the coast and lead the nascent path perturbation to form a LM. Occurrence of this intense cyclonic–anticyclonic eddy interaction is favored when surface wind forcing over the STCC is anticyclonic during the positive phasing of Pacific decadal oscillations (PDOs). Such wind forcing strengthens the meridional Ekman flux convergence and enhances eddy generation by the STCC, and seven of the past eight LM events are found to be preceded by 1–2 years by the persistent anticyclonic wind forcings over the STCC. Rather than a fully random phenomenon, we posit that the LM occurrence is regulated by regional wind forcing with a positive PDO imprint.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Qiu, bo@soest.hawaii.edu
Save
  • Akitomo, K., and M. Kurogi, 2001: Path transition of the Kuroshio due to mesoscale eddies: A two-layer, wind-driven experiment. J. Oceanogr., 57, 735741, https://doi.org/10.1023/A:1021292627245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akitomo, K., M. Ooi, and T. Awaji, 1996: Interannual variability of the Kuroshio transport in response to the wind stress field over the North Pacific: Its relation to the path variation south of Japan. J. Geophys. Res., 101, 14 05714 071, https://doi.org/10.1029/96JC01000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, M., M. Wimbush, J.-H. Park, K.-I. Chang, B.-H. Lim, D. R. Watts, H. Ichikawa, and W. J. Teague, 2008: Observations of Kuroshio flow variations in the East China Sea. J. Geophys. Res., 113, C05013, https://doi.org/10.1029/2007JC004200.

    • Search Google Scholar
    • Export Citation
  • Andres, M., V. Mensah, S. Jan, M.-H. Chang, Y.-J. Yang, C. M. Lee, B. Ma, and T. B. Sanford, 2017: Downstream evolution of the Kuroshio’s time-varying transport and velocity structure. J. Geophys. Res. Oceans, 122, 35193542, https://doi.org/10.1002/2016JC012519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., S. Jan, V. Mensah, M. Andres, L. Rainville, Y.-J. Yang, and Y. H. Cheng, 2018: Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep-Sea Res. I, 131, 115, https://doi.org/10.1016/j.dsr.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-L., and L.-Y. Oey, 2011: Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide-gauge data. Geophys. Res. Lett., 38, L08603, https://doi.org/10.1029/2011GL047062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-L., Y. Miyazawa, and X. Guo, 2015: Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Prog. Oceanogr., 135, 6476, https://doi.org/10.1016/j.pocean.2015.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., 1984: Bimodality of the Kuroshio. J. Phys. Oceanogr., 14, 92103, https://doi.org/10.1175/1520-0485(1984)014<0092:BOTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y.-H., C.-R. Ho, Q. Zheng, B. Qiu, J. Hu, and N.-J. Kuo, 2017: Statistical features of eddies approaching the Kuroshio east of Taiwan Island and Luzon Island. J. Oceanogr., 73, 427438, https://doi.org/10.1007/s10872-017-0411-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and K. Hanawa, 2003: Influence of mesoscale eddies on variations of the Kuroshio paths south of Japan. J. Oceanogr., 59, 2536, https://doi.org/10.1023/A:1022856122033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilson, J., and D. Roemmich, 2002: Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993–2001). J. Oceanogr., 58, 183195, https://doi.org/10.1023/A:1015841120927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsin, Y.-C., B. Qiu, T.-L. Chiang, and C.-R. Wu, 2013: Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. J. Geophys. Res. Oceans, 118, 43054316, https://doi.org/10.1002/jgrc.20323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and R. C. Beardsley, 1993: Temporal and spatial variability of volume transport of the Kuroshio in the East China Sea. Deep-Sea Res. I, 40, 583605, https://doi.org/10.1016/0967-0637(93)90147-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, K., 2001: Variation of the Kuroshio in the Tokara Strait induced by meso-scale eddies. J. Oceanogr., 57, 5568, https://doi.org/10.1023/A:1011174720390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imawaki, S., H. Uchida, H. Ichikawa, M. Fukasawa, S. Umatani, and the ASUKA Group, 2001: Satellite altimeter monitoring the Kuroshio transport south of Japan. Geophys. Res. Lett., 28, 1720, https://doi.org/10.1029/2000GL011796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imawaki, S., A. S. Bower, L. Beal, and B. Qiu, 2013: Western boundary currents. Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. G. Siedler et al., Eds., Academic Press, 305–338.

    • Crossref
    • Export Citation
  • Ishii, M., Y. Fukuda, H. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., V. Mensah, M. Andres, M.-H. Chang, and Y. J. Yang, 2017: Eddy-Kuroshio interactions: Local and remote effects. J. Geophys. Res. Oceans, 122, 97449764, https://doi.org/10.1002/2017JC013476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joh, Y., and E. Di Lorenzo, 2019: Interactions between Kuroshio Extension and central tropical Pacific lead to preferred decadal timescale oscillations in Pacific climate. Sci. Rep., 9, 13558, https://doi.org/10.1038/s41598-019-49927-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1980: Sea level variations around the Nansei Islands and the large meander in the Kuroshio south of central Japan. J. Oceanogr. Soc. Japan, 36, 227235, https://doi.org/10.1007/BF02070336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1995: Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr., 25, 31033117, https://doi.org/10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and H. Kawamura, 2002: Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J. Geophys. Res., 107, C03185, https://doi.org/10.1029/2001JC001225.

    • Search Google Scholar
    • Export Citation
  • Kobashi, F., and K. Hanawa, 2004: Hydrographic features off the southeast coast of Kyushu during the Kuroshio small meanders: A case study for small meanders that occurred in 1994 and 1995. J. Oceanogr., 60, 645661, https://doi.org/10.1007/s10872-004-5758-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., H. Mitsudera, and S.-P. Xie, 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis. J. Geophys. Res., 111, C09033, https://doi.org/10.1029/2006JC003479.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., I. M. Cohen, and D. R. Dowling, 2016: Fluid Mechanics. 6th ed. Academic Press, 921 pp.

  • Lien, R.-C., B. Ma, Y.-H. Cheng, C.-R. Ho, B. Qiu, C. M. Lee, and M.-H. Chang, 2014: Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res. Oceans, 119, 21292142, https://doi.org/10.1002/2013JC009548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N., 2002: Index and composites of the Kuroshio meander south of Japan. J. Oceanogr., 58, 639649, https://doi.org/10.1023/A:1022886121607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsudera, H., T. Waseda, T. Yoshikawa, and B. Taguchi, 2001: Anticyclonic eddies and Kuroshio meander formation. Geophys. Res. Lett., 28, 20252028, https://doi.org/10.1029/2000GL012668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., X. Guo, and T. Yamagata, 2004: Roles of mesoscale eddies in the Kuroshio paths. J. Phys. Oceanogr., 34, 22032222, https://doi.org/10.1175/1520-0485(2004)034<2203:ROMEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., T. Kagimoto, X. Guo, and H. Sakuma, 2008: The Kuroshio large meander formation in 2004 analyzed by an eddy-resolving ocean forecast system. J. Geophys. Res., 113, C10015, https://doi.org/10.1029/2007JC004226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moriyasu, S., 1961: On the difference in the monthly sea level between Kushimoto and Uragami, Japan. J. Oceanogr. Soc. Japan, 17, 197200, https://doi.org/10.5928/kaiyou1942.17.197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Na, H., K.-Y. Kim, S. Minobe, and Y. N. Sasaki, 2018: Interannual to decadal variability of the upper-ocean heat content in the western North Pacific and its relationship to oceanic and atmospheric variability. J. Climate, 31, 51075125, https://doi.org/10.1175/JCLI-D-17-0506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., B.-Y. Yim, S.-H. You, J.-H. Yoon, and B. Qiu, 2007: Seasonal variation of eddy kinetic energy of the North Pacific Subtropical Countercurrent simulated by an eddy-resolving OGCM. Geophys. Res. Lett., 34, L07601, https://doi.org/10.1029/2006GL029130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory. J. Phys. Oceanogr., 29, 24712486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2019: Kuroshio and Oyashio currents. Encyclopedia of Ocean Sciences, 3rd ed. J. K. Cochran, H. Bokuniewicz, and P. Yager, Eds., Academic Press, 384–394.

    • Crossref
    • Export Citation
  • Qiu, B., and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30, 21242137, https://doi.org/10.1175/1520-0485(2000)030<2124:KPVSOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre and mesoscale eddies on decadal timescales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010a: Eddy-mean flow interaction in the decadally-modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 10981110, https://doi.org/10.1016/j.dsr2.2008.11.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010b: Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213225, https://doi.org/10.1175/2009JPO4285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, https://doi.org/10.1175/JCLI-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, E. Oka, and S. Sugimoto, 2020: On reset of the wind-forced decadal Kuroshio Extension variability in late 2017. J. Climate, 33, 10 81310 828, https://doi.org/10.1175/JCLI-D-20-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., S. Guinehut, and G. Larnico, 2011: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res., 116, C07018, https://doi.org/10.1029/2010JC006505.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of Quick-SCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, H., 1978: Occurrence of small “trigger” meanders in the Kuroshio off southern Kyushu. J. Oceanogr. Soc. Japan, 34, 8184, https://doi.org/10.1007/BF02109256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., B. Qiu, and A. Kojima, 2020: Marked coastal warming off Tokai attributable to Kuroshio large meander. J. Oceanogr., 76, 141154, https://doi.org/10.1007/s10872-019-00531-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377, https://doi.org/10.1175/JCLI4142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., N. Usui, and H. Nakano, 2006: Dynamics of Kuroshio path variations in a high-resolution general circulation model. J. Geophys. Res., 111, C11001, https://doi.org/10.1029/2005JC003118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., S. Nishikawa, K. Sakamoto, N. Usui, H. Nakano, and G. Yamanaka, 2013: Effects of large-scale wind on the Kuroshio path south of Japan in a 60-year historical OGCM simulation. Climate Dyn., 41, 22872318, https://doi.org/10.1007/s00382-012-1641-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, Y. Fujii, and M. Kamachi, 2008a: Generation of a trigger meander for the 2004 Kuroshio large meander. J. Geophys. Res., 113, C01012, https://doi.org/10.1029/2007JC004266.

    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, H. Nakano, and Y. Fujii, 2008b: Formation process of the Kuroshio large meander in 2004. J. Geophys. Res., 113, C08047, https://doi.org/10.1029/2007JC004675.

    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, H. Nakano, and S. Matsumoto, 2013: Long-term variability of the Kuroshio path south of Japan. J. Oceanogr., 69, 647670, https://doi.org/10.1007/s10872-013-0197-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and I. Yasuda, 1987: Dynamics of the Kuroshio large meander: Two-layer model. J. Phys. Oceanogr., 17, 6681, https://doi.org/10.1175/1520-0485(1987)017<0066:DOTKLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, T., Y. Shimohira, H. Rinno, K. Yokouchi, and H. Akiyama, 2006: Criteria for the determination of a large meander of the Kuroshio based on its path information. Oceanogr. Japan, 15, 499507.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., T. N. Lee, W. E. Johns, C.-T. Liu, and R. Zantopp, 2001: The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. J. Phys. Oceanogr., 31, 10541074, https://doi.org/10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 479 35 0
Full Text Views 721 419 55
PDF Downloads 767 415 48