• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858, https://doi.org/10.1175/JPO3086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., H. L. Simmons, O. B. Marques, and J. B. Girton, 2019: Internal tide attenuation in the North Pacific. Geophys. Res. Lett., 46, 82058213, https://doi.org/10.1029/2019GL082648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boettger, D., R. Robertson, and L. Rainville, 2015: Characterizing the semidiurnal internal tide off Tasmania using glider data. J. Geophys. Res. Oceans, 120, 37303746, https://doi.org/10.1002/2015JC010711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp.

  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., Y.-T. Lin, M. Buijsman, and A. E. Newhall, 2018: Internal tidal modal ray refraction and energy ducting in baroclinic Gulf Stream currents. J. Phys. Oceanogr., 48, 19691993, https://doi.org/10.1175/JPO-D-18-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, https://doi.org/10.1175/JPO-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, https://doi.org/10.1029/2010GL045598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, and J. D. Nash, 2013: A coupled Laplace model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, https://doi.org/10.1175/JPO-D-12-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey submarine canyon. J. Phys. Oceanogr., 32, 18901913, https://doi.org/10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1981: Waves in the Ocean. Elsevier Oceanography Series, Vol. 20, Elsevier, 602 pp.

  • Legg, S., 2004: Internal tides generated on a corrugated continental slope. Part I: Cross-slope barotropic forcing. J. Phys. Oceanogr., 34, 156173, https://doi.org/10.1175/1520-0485(2004)034<0156:ITGOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • MacKinnon, J. A., and et al. , 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K., M. Alford, J. Nash, E. Kunze, and M. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, https://doi.org/10.1029/2007GL029749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, https://doi.org/10.1175/2011JPO4581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, https://doi.org/10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res. I, 42, 135148, https://doi.org/10.1016/0967-0637(95)92886-C.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., 2019: Energy fluxes in coastal trapped waves. J. Phys. Oceanogr., 49, 30613068, https://doi.org/10.1175/JPO-D-18-0172.1.

  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, https://doi.org/10.1029/2006GL028170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. L. Shroyer, S. M. Kelly, M. E. Inall, T. F. Duda, M. D. Levine, N. L. Jones, and R. C. Musgrave, 2012: Are any coastal internal tides predictable? Oceanography, 25, 8095, https://doi.org/10.5670/oceanog.2012.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the pacific ocean. J. Geophys. Res., 106, 22 44122 449, https://doi.org/10.1029/2000JC000770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, A., M. Alford, J. Nash, L. Rainville, M. Buijsman, D. S. Ko, and B. Lim, 2015: Structure and variability of internal tides in Luzon Strait. J. Phys. Oceanogr., 45, 15741594, https://doi.org/10.1175/JPO-D-14-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. Alford, A. Lucas, S. Johnston, J. MacKinnon, A. Waterhouse, and P. Strutton, 2015: Breaking internal tides keep the ocean in balance. Eos, Trans. Amer. Geophys. Union, 96, 15, https://doi.org/10.1029/2015EO039555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, https://doi.org/10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and et al. , 2017: Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. J. Geophys. Res. Oceans, 122, 25192538, https://doi.org/10.1002/2016JC012331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., A. F. Waterhouse, and S. M. Kelly, 2020: Internal tide nonstationarity and wave–mesoscale interactions in the Tasman Sea. J. Phys. Oceanogr., 50, 29312951, https://doi.org/10.1175/JPO-D-19-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, https://doi.org/10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2001: Internal wave reflection and scatter from sloping rough topography. J. Phys. Oceanogr., 31, 537553, https://doi.org/10.1175/1520-0485(2001)031<0537:IWRASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., and et al. , 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and et al. , 2018: Observations of the Tasman Sea internal tide beam. J. Phys. Oceanogr., 48, 12831297, https://doi.org/10.1175/JPO-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys., 13, 167182, https://doi.org/10.1029/RG013i001p00167.

  • Zaron, E. D., 2017: Mapping the nonstationary internal tide with satellite altimetry. J. Geophys. Res. Oceans, 122, 539554, https://doi.org/10.1002/2016JC012487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2016: Internal tide oceanic tomography. Geophys. Res. Lett., 43, 91579164, https://doi.org/10.1002/2016GL070567.

  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, H. L. Simmons, D. Brazhnikov, and R. Pinkel, 2018: Satellite investigation of the M2 internal tide in the Tasman Sea. J. Phys. Oceanogr., 48, 687703, https://doi.org/10.1175/JPO-D-17-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilberman, N., M. Merrifield, G. Carter, D. Luther, M. Levine, and T. J. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian ridge. J. Phys. Oceanogr., 41, 20212036, https://doi.org/10.1175/JPO-D-10-05009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 159 159 15
Full Text Views 58 58 6
PDF Downloads 73 73 4

Internal Tide Structure and Temporal Variability on the Reflective Continental Slope of Southeastern Tasmania

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 3 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • | 4 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 5 Large Lakes Observatory, and Physics and Astronomy Department, University of Minnesota Duluth, Duluth, Minnesota
  • | 6 University of Alaska Fairbanks, Fairbanks, Alaska
© Get Permissions
Restricted access

Abstract

Mode-1 internal tides can propagate far away from their generation sites, but how and where their energy is dissipated is not well understood. One example is the semidiurnal internal tide generated south of New Zealand, which propagates over a thousand kilometers before impinging on the continental slope of Tasmania. In situ observations and model results from a recent process-study experiment are used to characterize the spatial and temporal variability of the internal tide on the southeastern Tasman slope, where previous studies have quantified large reflectivity. As expected, a standing wave pattern broadly explains the cross-slope and vertical structure of the observed internal tide. However, model and observations highlight several additional features of the internal tide on the continental slope. The standing wave pattern on the sloping bottom as well as small-scale bathymetric corrugations lead to bottom-enhanced tidal energy. Over the corrugations, larger tidal currents and isopycnal displacements are observed along the trough as opposed to the crest. Despite the long-range propagation of the internal tide, most of the variability in energy density on the slope is accounted by the spring–neap cycle. However, the timing of the semidiurnal spring tides is not consistent with a single remote wave and is instead explained by the complex interference between remote and local tides on the Tasman slope. These observations suggest that identifying the multiple waves in an interference pattern and their interaction with small-scale topography is an important step in modeling internal energy and dissipation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: O. B. Marques, omarques@ucsd.edu

Abstract

Mode-1 internal tides can propagate far away from their generation sites, but how and where their energy is dissipated is not well understood. One example is the semidiurnal internal tide generated south of New Zealand, which propagates over a thousand kilometers before impinging on the continental slope of Tasmania. In situ observations and model results from a recent process-study experiment are used to characterize the spatial and temporal variability of the internal tide on the southeastern Tasman slope, where previous studies have quantified large reflectivity. As expected, a standing wave pattern broadly explains the cross-slope and vertical structure of the observed internal tide. However, model and observations highlight several additional features of the internal tide on the continental slope. The standing wave pattern on the sloping bottom as well as small-scale bathymetric corrugations lead to bottom-enhanced tidal energy. Over the corrugations, larger tidal currents and isopycnal displacements are observed along the trough as opposed to the crest. Despite the long-range propagation of the internal tide, most of the variability in energy density on the slope is accounted by the spring–neap cycle. However, the timing of the semidiurnal spring tides is not consistent with a single remote wave and is instead explained by the complex interference between remote and local tides on the Tasman slope. These observations suggest that identifying the multiple waves in an interference pattern and their interaction with small-scale topography is an important step in modeling internal energy and dissipation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: O. B. Marques, omarques@ucsd.edu
Save