• Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1973: Use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Eng., 95, 429438, https://doi.org/10.1115/1.3447047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D., and M. Li, 1995: Patterns of bubble clouds organized by Langmuir circulation. J. Phys. Oceanogr., 25, 14261440, https://doi.org/10.1175/1520-0485(1995)025<C1426:POBCOB>E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., J. Wells, A. E. Tejada-Martínez, and C. E. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, https://doi.org/10.1126/science.1100849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, https://doi.org/10.1175/JPO-D-12-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84103, https://doi.org/10.1175/JPO-D-14-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101124, https://doi.org/10.1016/S1463-5003(02)00062-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and F. Veron, 2019: Lagrangian investigation of wave-driven turbulence in the ocean surface boundary layer. J. Phys. Oceanogr., 49, 409429, https://doi.org/10.1175/JPO-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, https://doi.org/10.1029/2009GL037620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, https://doi.org/10.1175/2010JPO4403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., E. G. Patton, and P. P. Sullivan, 2019: Nonlocal transport and implied viscosity and diffusivity throughout the boundary layer in LES of the Southern Ocean with surface waves. J. Phys. Oceanogr., 49, 26312652, https://doi.org/10.1175/JPO-D-18-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B., 2018: Turbulence-induced anti-Stokes flow and the resulting limitations of large-eddy simulation. J. Phys. Oceanogr., 48, 117122, https://doi.org/10.1175/JPO-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B. C., A. L. M. Grant, and J. A. Polton, 2019: Pressure–strain terms in Langmuir turbulence. J. Fluid Mech., 880, 531, https://doi.org/10.1017/jfm.2019.701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444457, https://doi.org/10.1175/JPO2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., Y.-D. Lenn, S. Elipot, T. K. Chereskin, and J. Sprintall, 2013: Can Drake Passage observations match Ekman’s classic theory? J. Phys. Oceanogr., 43, 17331740, https://doi.org/10.1175/JPO-D-13-034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabe, T. J., T. Kukulka, I. Ginis, T. Hara, B. G. Reichl, E. A. D’Asaro, R. R. Harcourt, and P. P. Sullivan, 2015: Langmuir turbulence under Hurricane Gustav (2008). J. Phys. Oceanogr., 45, 657677, https://doi.org/10.1175/JPO-D-14-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A., 2018: A model for the wind-driven current in the wavy oceanic surface layer: Apparent friction velocity reduction and roughness length enhancement. J. Phys. Oceanogr., 48, 27212736, https://doi.org/10.1175/JPO-D-18-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 2004: Langmuir circulation. Annu. Rev. Fluid. Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Kukulka, B. G. Reichl, T. Hara, I. Ginis, and P. P. Sullivan, 2018: Interaction of Langmuir turbulence and inertial currents in the ocean surface boundary layer under tropical cyclones. J. Phys. Oceanogr., 48, 19211940, https://doi.org/10.1175/JPO-D-17-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Kukulka, B. G. Reichl, T. Hara, and I. Ginis, 2019: Wind-wave misalignment effects on Langmuir turbulence in tropical cyclones conditions. J. Phys. Oceanogr., 49, 31093126, https://doi.org/10.1175/JPO-D-19-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulations within the oceanic mixed layer. Deep-Sea Res., 35, 711747, https://doi.org/10.1016/0198-0149(88)90027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 143 143 18
Full Text Views 37 37 5
PDF Downloads 57 57 9

Wind- and Wave-Driven Reynolds Stress and Velocity Shear in the Upper Ocean for Idealized Misaligned Wind-Wave Conditions

View More View Less
  • 1 University of Delaware, Newark, Delaware
© Get Permissions
Restricted access

Abstract

This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik–Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress–current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity–pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions.

Current affiliation: Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Wang, dongwang@udel.edu

Abstract

This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik–Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress–current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity–pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions.

Current affiliation: Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Wang, dongwang@udel.edu
Save