Diagnosing the Scale- and Space-Dependent Horizontal Eddy Diffusivity at the Global Surface Ocean

Aleksi Nummelin Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Aleksi Nummelin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7591-3504
,
Julius J. M. Busecke Department of Geosciences, Princeton University, Princeton, New Jersey

Search for other papers by Julius J. M. Busecke in
Current site
Google Scholar
PubMed
Close
,
Thomas W. N. Haine Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Thomas W. N. Haine in
Current site
Google Scholar
PubMed
Close
, and
Ryan P. Abernathey Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Ryan P. Abernathey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic tracers are transported by oceanic motions of all scales, but only the large-scale motions are resolved by the present-day Earth system models. In these models, the unresolved lateral sub-gridscale tracer transport is generally parameterized through diffusive closures with a scale-independent diffusion coefficient. However, evidence from observations and theory suggests that diffusivity varies spatially and is length-scale dependent. Here we provide new scale-dependent quantification of the global surface diffusivities. To this end we use a recently developed statistical inversion method, MicroInverse, to diagnose horizontal surface diffusivities from observed sea surface temperature and idealized model simulation. We compare the results to theoretical estimates of mixing by the large-scale shear and by the sub-gridscale velocity fluctuations. The diagnosed diffusivity magnitude peaks in the tropics and western boundary currents with minima in the subtropical gyres (~3000 and ~100 m2 s−1) at ~40-km scale, respectively. Focusing on the 40–200-km length scale range, we find that the diffusivity magnitude scales with the length scale to a power n that is between 1.22 and 1.54 (90% confidence) in the tropics and also peaks at values above 1 in the boundary currents. In the midlatitudes we find that 0.58 < n < 0.87 (90% confidence). Comparison to the theory suggests that in regions with n > 1 the horizontal mixing is dominated by large-scale shear, whereas in regions where n < 1 the horizontal mixing is due to processes that are small compared to the 40–200-km length scale range considered in this study.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0256.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aleksi Nummelin, aleksi.h.nummelin@gmail.com

Abstract

Oceanic tracers are transported by oceanic motions of all scales, but only the large-scale motions are resolved by the present-day Earth system models. In these models, the unresolved lateral sub-gridscale tracer transport is generally parameterized through diffusive closures with a scale-independent diffusion coefficient. However, evidence from observations and theory suggests that diffusivity varies spatially and is length-scale dependent. Here we provide new scale-dependent quantification of the global surface diffusivities. To this end we use a recently developed statistical inversion method, MicroInverse, to diagnose horizontal surface diffusivities from observed sea surface temperature and idealized model simulation. We compare the results to theoretical estimates of mixing by the large-scale shear and by the sub-gridscale velocity fluctuations. The diagnosed diffusivity magnitude peaks in the tropics and western boundary currents with minima in the subtropical gyres (~3000 and ~100 m2 s−1) at ~40-km scale, respectively. Focusing on the 40–200-km length scale range, we find that the diffusivity magnitude scales with the length scale to a power n that is between 1.22 and 1.54 (90% confidence) in the tropics and also peaks at values above 1 in the boundary currents. In the midlatitudes we find that 0.58 < n < 0.87 (90% confidence). Comparison to the theory suggests that in regions with n > 1 the horizontal mixing is dominated by large-scale shear, whereas in regions where n < 1 the horizontal mixing is due to processes that are small compared to the 40–200-km length scale range considered in this study.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0256.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aleksi Nummelin, aleksi.h.nummelin@gmail.com

Supplementary Materials

    • Supplemental Materials (ZIP 3.48 MB)
Save
  • Abernathey, R., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, https://doi.org/10.1002/jgrc.20066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., and G. Haller, 2018: Transport by Lagrangian vortices in the Eastern Pacific. J. Phys. Oceanogr., 48, 667685, https://doi.org/10.1175/JPO-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, https://doi.org/10.1175/2009JPO4201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, https://doi.org/10.1016/j.ocemod.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, https://doi.org/10.1175/2007JCLI1849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aluie, H., 2018: Convolutions on the sphere: Commutation with differential operators. Int. J. Geomath., 10, 9, https://doi.org/10.1007/S13137-019-0123-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amores, A., O. Melnichenko, and N. Maximenko, 2016: Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum. J. Geophys. Res. Oceans, 122, 2341, https://doi.org/10.1002/2016JC012256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aris, R., 1956: On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. London, 235A, 6777, https://doi.org/10.1098/rspa.1956.0065.

    • Search Google Scholar
    • Export Citation
  • Armi, L., and H. Stommel, 1983: Four views of a portion of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 13, 828857, https://doi.org/10.1175/1520-0485(1983)013<0828:FVOAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., 2019: The GM+E closure: A framework for coupling backscatter with the Gent and McWilliams parameterization. Ocean Modell., 136, 85106, https://doi.org/10.1016/j.ocemod.2019.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., and B. Fox-Kemper, 2013: Eddy parameterization challenge suite. I: Eady spindown. Ocean Modell., 64, 1228, https://doi.org/10.1016/j.ocemod.2012.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, and F. O. Bryan, 2015: A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Modell., 86, 114, https://doi.org/10.1016/j.ocemod.2014.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., D. Marshall, J. Maddison, and J. Mak, 2017a: Evaluation of a scalar eddy transport coefficient based on geometric constraints. Ocean Modell., 109, 4454, https://doi.org/10.1016/j.ocemod.2016.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, and B. Pearson, 2017b: A scale-aware subgrid model for quasi-geostrophic turbulence. J. Geophys. Res. Oceans, 122, 15291554, https://doi.org/10.1002/2016JC012265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, and F. O. Bryan, 2020: A diagnosis of anisotropic eddy diffusion from a high-resolution global ocean model. J. Adv. Model. Earth Syst., 12, e2019MS001904, https://doi.org/10.1029/2019MS001904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, K. Speer, and R. Ferrari, 2021: Relative dispersion in the Antarctic circumpolar current. J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-19-0243.1, in press.

    • Search Google Scholar
    • Export Citation
  • Banzon, V., R. Reynolds, and NCAR Staff, Eds., 2020: The Climate Data Guide: SST data: NOAA High-resolution (0.25x0.25) Blended Analysis of Daily SST and Ice, OISSTv2. NCAR/UCAR, accessed 5 January 2020, https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-high-resolution-025x025-blended-analysis-daily-sst-and-ice-oisstv2.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, https://doi.org/10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1987: A Lagrangian analysis of turbulent diffusion. Rev. Geophys., 25, 799822, https://doi.org/10.1029/RG025i004p00799.

  • Bhatia, H., V. Pascucci, and P. Bremer, 2014: The natural Helmholtz-Hodge decomposition for open-boundary flow analysis. IEEE Trans. Vis. Comput. Graph., 20, 15661578, https://doi.org/10.1109/TVCG.2014.2312012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Choi, J. Kurian, and P. Chang, 2018: Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico. Ocean Modell., 122, 1325, https://doi.org/10.1016/j.ocemod.2017.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busecke, J. J. M., and R. P. Abernathey, 2019: Ocean mesoscale mixing linked to climate variability. Sci. Adv., 5, eaav5014, https://doi.org/10.1126/sciadv.aav5014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busecke, J. J. M., R. P. Abernathey, and A. L. Gordon, 2017: Lateral eddy mixing in the subtropical salinity maxima of the global ocean. J. Phys. Oceanogr., 47, 737754, https://doi.org/10.1175/JPO-D-16-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, A. M. Howard, and M. S. Dubovikov, 2019: Three-dimensional, space-dependent mesoscale diffusivity: Derivation and implications. J. Phys. Oceanogr., 49, 10551074, https://doi.org/10.1175/JPO-D-18-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, S. T., C. Wortham, E. Kunze, and W. B. Owens, 2015: Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability. Geophys. Res. Lett., 42, 39893997, https://doi.org/10.1002/2015GL063827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coquart, L., and S. Valcke, 2020: ESMF v7.1.0r remapping between two structured grids and between two unstructured grids and one structured grid. Zenodo, 25 pp., https://doi.org/10.5281/zenodo.3903387.

    • Crossref
    • Export Citation
  • Danabasoglu, G., R. Ferrari, and J. C. McWilliams, 2008: Sensitivity of an ocean general circulation model to a parameterization of near-surface eddy fluxes. J. Climate, 21, 11921208, https://doi.org/10.1175/2007JCLI1508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772, https://doi.org/10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckart, C., 1948: An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res., 7, 265–275.

  • Eden, C., M. Jochum, and G. Danabasoglu, 2009: Effects of different closures for thickness diffusivity. Ocean Modell., 26, 4759, https://doi.org/10.1016/j.ocemod.2008.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, https://doi.org/10.1016/j.ocemod.2015.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21, 27702789, https://doi.org/10.1175/2007JCLI1510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Model., 32, 143156, https://doi.org/10.1016/j.ocemod.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2019: Challenges and prospects in ocean circulation models. Front. Mar. Sci., 6, 65, https://doi.org/10.3389/fmars.2019.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324, https://doi.org/10.1175/1520-0442(1998)011<2310:ASFITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2006: Turbulent dispersion in the ocean. Prog. Oceanogr., 70, 113125, https://doi.org/10.1016/j.pocean.2005.07.005.

  • Gent, P. R., 2011: The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modell., 39, 29, https://doi.org/10.1016/j.ocemod.2010.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, https://doi.org/10.1002/2015GL064100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., A. Russell, M.-A. Pradal, and R. Abernathey, 2017: Impact of lateral mixing in the ocean on El Niño in a suite of fully coupled climate models. J. Adv. Model. Earth Syst., 9, 24932513, https://doi.org/10.1002/2017MS000917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 528 pp.

    • Crossref
    • Export Citation
  • Groeskamp, S., P. M. Barker, T. J. McDougall, R. P. Abernathey, and S. M. Griffies, 2019: Venm: An algorithm to accurately calculate neutral slopes and gradients. J. Adv. Model. Earth Syst., 11, 19171939, https://doi.org/10.1029/2019MS001613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. H. LaCasce, T. J. McDougall, and M. Rogé, 2020: Full-depth global estimates of ocean mesoscale eddy mixing from observations and theory. Geophys. Res. Lett., 47, e2020GL089425, https://doi.org/10.1029/2020GL089425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haigh, M., L. Sun, I. Shevchenko, and P. Berloff, 2020: Tracer-based estimates of eddy-induced diffusivities. Deep-Sea Res. I, 160, 103264, https://doi.org/10.1016/j.dsr.2020.103264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., and A. Czaja, 2012: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. I, 70, 6072, https://doi.org/10.1016/j.dsr.2012.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herterich, K., and K. Hasselmann, 1987: Extraction of mixed layer advection velocities, diffusion coefficients, feedback factors and atmospheric forcing parameters from the statistical analysis of North Pacific SST anomaly fields. J. Phys. Oceanogr., 17, 21452156, https://doi.org/10.1175/1520-0485(1987)017<2145:EOMLAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., A. Adcroft, S. Khani, and H. Kong, 2019: Toward an energetically consistent, resolution aware parameterization of ocean mesoscale eddies. J. Adv. Model. Earth Syst., 11, 28442860, https://doi.org/10.1029/2019MS001750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffress, S., and T. Haine, 2014a: Correlated signals and causal transport in ocean circulation. Quart. J. Roy. Meteor. Soc., 140, 23752382, https://doi.org/10.1002/qj.2313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffress, S., and T. Haine, 2014b: Estimating sea-surface temperature transport fields from stochastically-forced fluctuations. New J. Phys., 16, 105001, https://doi.org/10.1088/1367-2630/16/10/105001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and D. P. Marshall, 2014: Advection of baroclinic eddies by depth mean flow. Geophys. Res. Lett., 41, 35173521, https://doi.org/10.1002/2014GL060001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012a: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, https://doi.org/10.1175/JPO-D-11-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, J. H. Lacasce, and S. T. Merrifield, 2012b: Reconciling float-based and tracer-based estimates of lateral diffusivities. J. Mar. Res., 70, 569602, https://doi.org/10.1357/002224012805262743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • Le Sommer, J., F. d’Ovidio, and G. Madec, 2011: Parameterization of subgrid stirring in eddy resolving ocean models. Part I: Theory and diagnostics. Ocean Modell., 39, 154169, https://doi.org/10.1016/j.ocemod.2011.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and G. C. Johnson, 2013: Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern Oscillation response, and seasonal cycle. J. Geophys. Res. Oceans, 118, 29923006, https://doi.org/10.1002/jgrc.20210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, J., J. R. Maddison, D. P. Marshall, and D. R. Munday, 2018: Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model. J. Phys. Oceanogr., 48, 23632382, https://doi.org/10.1175/JPO-D-18-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, https://doi.org/10.1175/JPO2949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356, https://doi.org/10.1175/JCLI4165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nummelin, A., S. Jeffress, and T. Haine, 2018: Statistical inversion of surface ocean kinematics from satellite sea surface temperature observations. J. Atmos. Oceanic Technol., 35, 19131933, https://doi.org/10.1175/JTECH-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res. Oceanogr. Abstr., 18, 789802, https://doi.org/10.1016/0011-7471(71)90046-5.

  • Ollitrault, M., C. Gabillet, and A. C. De Verdiere, 2005: Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381407, https://doi.org/10.1017/S0022112005004556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

  • Ostrovskii, A. G., and L. I. Piterbarg, 2000: Inversion of upper ocean temperature time series for entrainment, advection, and diffusivity. J. Phys. Oceanogr., 30, 201214, https://doi.org/10.1175/1520-0485(2000)030<0201:IOUOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostrovskii, A. G., and J. Font, 2003: Advection and dissipation rates in the upper ocean mixed layer heat anomaly budget over the North Atlantic in summer. J. Geophys. Res., 108, 3376, https://doi.org/10.1029/2003JC001967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B., B. Fox-Kemper, S. Bachman, and F. Bryan, 2017: Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modell., 115, 4258, https://doi.org/10.1016/j.ocemod.2017.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 10671076, https://doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483496, https://doi.org/10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. M. Hartten, 2014: Stochastic forcing of north tropical Atlantic sea surface temperatures by the North Atlantic Oscillation. Geophys. Res. Lett., 41, 21262132, https://doi.org/10.1002/2014GL059252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piterbarg, L., and A. Ostrovskii, 1997: Advection and Diffusion in Random Media: Implications for Sea Surface Temperature Anomalies. Springer, 330 pp.

    • Crossref
    • Export Citation
  • Poje, A. C., A. C. Haza, T. M. Özgökmen, M. G. Magaldi, and Z. D. Garraffo, 2010: Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modell., 31, 3650, https://doi.org/10.1016/j.ocemod.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136139, https://doi.org/10.1002/zamm.19250050212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramshaw, J. D., 1985: Conservative rezoning algorithm for generalized two-dimensional meshes. J. Comput. Phys., 59, 193199, https://doi.org/10.1016/0021-9991(85)90141-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1983: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech., 133, 133145, https://doi.org/10.1017/S0022112083001822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 89188925, https://doi.org/10.1002/2014GL061773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., R. Santoleri, R. Bourdalle-Badie, A. Griffa, L. Piterbarg, and G. Taburet, 2016: Improving the altimeter-derived surface currents using high-resolution sea surface temperature data: A feasibility study based on model outputs. J. Atmos. Oceanic Technol., 33, 27692784, https://doi.org/10.1175/JTECH-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from Argo float and surface drifter trajectories. J. Geophys. Res. Oceans, 123, 45604575, https://doi.org/10.1029/2018JC013750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., H. Jones, J. Marshall, and C. Hill, 2009: Robustness of an effective diffusivity diagnostic in oceanic flows. J. Phys. Oceanogr., 39, 19932009, https://doi.org/10.1175/2009JPO4122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, https://doi.org/10.1175/2008JPO3880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanley, Z., S. D. Bachman, and I. Grooms, 2020: Vertical structure of ocean mesoscale eddies with implications for parameterizations of tracer transport. J. Adv. Model. Earth Syst., 12, e2020MS002151, https://doi.org/10.1029/2020MS002151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, 219A, 186203, https://doi.org/10.1098/rspa.1953.0139.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method for linear and polynomial regression analysis. Proc. K. Ned. Akad. Wet., Ser. A, 53, 386392, 512–525, 1397–1412.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • van Sebille, E., S. Waterman, A. Barthel, R. Lumpkin, S. R. Keating, C. Fogwill, and C. Turney, 2015: Pairwise surface drifter separation in the western pacific sector of the southern ocean. J. Geophys. Res. Oceans, 120, 67696781, https://doi.org/10.1002/2015JC010972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villas Bôas, A. B., O. T. Sato, A. Chaigneau, and G. P. Castelao, 2015: The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett., 42, 18561862, https://doi.org/10.1002/2015GL063105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vollmer, L., and C. Eden, 2013: A global map of meso-scale eddy diffusivities based on linear stability analysis. Ocean Modell., 72, 198209, https://doi.org/10.1016/j.ocemod.2013.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, P., S. Rühs, F. U. Schwarzkopf, I. M. Koszalka, and A. Biastoch, 2019: Can Lagrangian tracking simulate tracer spreading in a high-resolution ocean general circulation model? J. Phys. Oceanogr., 49, 11411157, https://doi.org/10.1175/JPO-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weizsäcker, C. F., 1948: Das spektrum der turbulenz bei großen reynoldsschen zahlen. Z. Phys., 124, 614627, https://doi.org/10.1007/BF01668898.

  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, https://doi.org/10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., 2012: Forecast skill and predictability of observed Atlantic sea surface temperatures. J. Climate, 25, 50475056, https://doi.org/10.1175/JCLI-D-11-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., 2019: Ocean transport and eddy energy. Figshare, 22 pp., https://doi.org/10.6084/m9.figshare.10105922.v1.

    • Crossref