The Role of Eddies in the Zonal and Meridional Overturning Circulations of Buoyancy-Forced Basins

Suyash Bire Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Suyash Bire in
Current site
Google Scholar
PubMed
Close
and
Christopher L.P. Wolfe School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Christopher L.P. Wolfe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The zonal and meridional overturning circulations of buoyancy-forced basins are studied in an eddy-resolving model. The zonal overturning circulation (ZOC) is driven by the meridional gradient of buoyancy at the surface and stratification at the southern boundary. The ZOC, in turn, produces zonal buoyancy gradients through upwelling and downwelling at the western and eastern boundaries, respectively. The meridional overturning circulation (MOC) is driven by these zonal gradients rather than being directly driven by meridional gradients. Eddies lead to a broadening of the upwelling and downwelling limbs of the ZOC, as well as a decoupling of the locations of vertical and diapycnal transport. This broadening is more prominent on the eastern boundary, where westward-moving eddies transport warm water away from a poleward-flowing eastern boundary current. Most of the diapycnal downwelling occurs in the “swash zone”—the region where the isopycnals intermittently come in contact with the surface and lose buoyancy to the atmosphere. A scaling for the overturning circulations, which depends on the background stratification and the surface buoyancy gradient, is derived and found to be an excellent fit to the numerical experiments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suyash Bire, bire@mit.edu

Abstract

The zonal and meridional overturning circulations of buoyancy-forced basins are studied in an eddy-resolving model. The zonal overturning circulation (ZOC) is driven by the meridional gradient of buoyancy at the surface and stratification at the southern boundary. The ZOC, in turn, produces zonal buoyancy gradients through upwelling and downwelling at the western and eastern boundaries, respectively. The meridional overturning circulation (MOC) is driven by these zonal gradients rather than being directly driven by meridional gradients. Eddies lead to a broadening of the upwelling and downwelling limbs of the ZOC, as well as a decoupling of the locations of vertical and diapycnal transport. This broadening is more prominent on the eastern boundary, where westward-moving eddies transport warm water away from a poleward-flowing eastern boundary current. Most of the diapycnal downwelling occurs in the “swash zone”—the region where the isopycnals intermittently come in contact with the surface and lose buoyancy to the atmosphere. A scaling for the overturning circulations, which depends on the background stratification and the surface buoyancy gradient, is derived and found to be an excellent fit to the numerical experiments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Suyash Bire, bire@mit.edu
Save
  • Allison, L. C., H. L. Johnson, and D. P. Marshall, 2011: Spin-up and adjustment of the Antarctic Circumpolar current and global pycnocline. J. Mar. Res., 69, 167189, https://doi.org/10.1357/002224011798765330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcilon, V., and J. Pedlosky, 1967: A unified linear theory of homogeneous and stratified rotating fluids. J. Fluid Mech., 29, 609621, https://doi.org/10.1017/S0022112067001053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bire, S., and C. L. P. Wolfe, 2018: The role of eddies in buoyancy-driven eastern boundary currents. J. Phys. Oceanogr., 48, 28292850, https://doi.org/10.1175/JPO-D-18-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. A. Katsman, 2019: Dynamics of downwelling in an eddying marginal sea: Contrasting the Eulerian and the isopycnal perspective. J. Phys. Oceanogr., 49, 30173035, https://doi.org/10.1175/JPO-D-19-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., and C. L. Wolfe, 2009: Eddy-driven buoyancy gradients on eastern boundaries and their role in the thermocline. J. Phys. Oceanogr., 39, 15951614, https://doi.org/10.1175/2009JPO4063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., and C. L. Wolfe, 2013: Adiabatic eastern boundary currents. J. Phys. Oceanogr., 43, 11271149, https://doi.org/10.1175/JPO-D-12-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., and C. S. Jones, 2017: Warm-route versus cold-route interbasin exchange in the meridional overturning circulation. J. Phys. Oceanogr., 47, 19811997, https://doi.org/10.1175/JPO-D-16-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., C. L. Wolfe, and B. C. Ludka, 2010: Eastern-boundary contribution to the residual and meridional overturning circulations. J. Phys. Oceanogr., 40, 20752090, https://doi.org/10.1175/2010JPO4426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childers, K. H., C. N. Flagg, T. Rossby, and C. Schrum, 2015: Directly measured currents and estimated transport pathways of Atlantic water between 59.5°N and the Iceland–Faroes–Scotland Ridge. Tellus, 67A, 28067, https://doi.org/10.3402/tellusa.v67.28067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264, https://doi.org/10.1175/1520-0485(1993)023<2254:MFADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Verdière, C. A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46, 215265, https://doi.org/10.1357/002224088785113667.

  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. C. Allison, and H. L. Johnson, 2017a: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., L.-P. Nadeau, D. P. Marshall, L. C. Allison, and H. L. Johnson, 2017b: A model of the ocean overturning circulation with two closed basins and a reentrant channel. J. Phys. Oceanogr., 47, 28872906, https://doi.org/10.1175/JPO-D-16-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgiou, S., C. G. van der Boog, N. Brüggemann, S. L. Ypma, J. D. Pietrzak, and C. A. Katsman, 2019: On the interplay between downwelling, deep convection and mesoscale eddies in the Labrador Sea. Ocean Modell., 135, 5670, https://doi.org/10.1016/j.ocemod.2019.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422432, https://doi.org/10.1175/1520-0485(1998)028<0422:ETRBEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, https://doi.org/10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2016: The effect of Southern Ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr., 46, 34553470, https://doi.org/10.1175/JPO-D-16-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., S. S. Drijfhout, H. A. Dijkstra, and M. A. Spall, 2018: Sinking of dense North Atlantic waters in a global ocean model: Location and controls. J. Geophys. Res. Oceans, 123, 35633576, https://doi.org/10.1029/2017JC013329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddison, J. R., and D. P. Marshall, 2013: The Eliassen–Palm flux tensor. J. Fluid Mech., 729, 69102, https://doi.org/10.1017/jfm.2013.259.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the southern ocean. Prog. Oceanogr., 70, 331345, https://doi.org/10.1016/j.pocean.2006.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., R. Ferrari, and T. Schneider, 2013: The force balance of the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr., 43, 11931208, https://doi.org/10.1175/JPO-D-12-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., and K. Bryan, 2000: Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr., 30, 590605, https://doi.org/10.1175/1520-0485(2000)030<0590:COTDCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Thermally driven circulations in small oceanic basins. J. Phys. Oceanogr., 33, 23332340, https://doi.org/10.1175/1520-0485(2003)033<2333:TDCISO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., and M. A. Spall, 2005: Boundary intensification of vertical velocity in a β-plane basin. J. Phys. Oceanogr., 35, 24872500, https://doi.org/10.1175/JPO2832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, https://doi.org/10.1175/JPO-2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. Flagg, L. Chafik, B. Harden, and H. Søiland, 2018: A direct estimate of volume, heat, and freshwater exchange across the Greenland-Iceland-Faroe-Scotland ridge. J. Geophys. Res. Oceans, 123, 71397153, https://doi.org/10.1029/2018JC014250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2003: On the thermohaline circulation in flat bottom marginal seas. J. Mar. Res., 61, 125, https://doi.org/10.1357/002224003321586390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, https://doi.org/10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2010: Dynamics of downwelling in an eddy-resolving convective basin. J. Phys. Oceanogr., 40, 23412347, https://doi.org/10.1175/2010JPO4465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2011: On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas. J. Climate, 24, 48444858, https://doi.org/10.1175/2011JCLI4130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2001: Where does dense water sink? A subpolar gyre example. J. Phys. Oceanogr., 31, 810826, https://doi.org/10.1175/1520-0485(2001)031<0810:WDDWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., R. Ferrari, and A. F. Thompson, 2014: On the importance of surface forcing in conceptual models of the deep ocean. J. Phys. Oceanogr., 44, 891899, https://doi.org/10.1175/JPO-D-13-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30, 933954, https://doi.org/10.1175/1520-0485(2000)030<0933:LSCAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2010: What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, https://doi.org/10.1175/2010JPO4393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, https://doi.org/10.1175/2011JPO4570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., P. B. Rhines, and E. P. Chassignet, 2018: On mapping the diapycnal water mass transformation of the upper North Atlantic Ocean. J. Phys. Oceanogr., 48, 22332258, https://doi.org/10.1175/JPO-D-17-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., C. A. Lin, and R. J. Greatbatch, 1992: A thermocline model for ocean-climate studies. J. Mar. Res., 50, 99124, https://doi.org/10.1357/002224092784797755.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 344 0 0
Full Text Views 463 122 15
PDF Downloads 412 115 17