Poleward Shift of the Kuroshio Extension Front and Its Impact on the North Pacific Subtropical Mode Water in the Recent Decades

Baolan Wu Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Baolan Wu in
Current site
Google Scholar
PubMed
Close
,
Xiaopei Lin Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xiaopei Lin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6413-4479
, and
Lisan Yu Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Lisan Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth hm before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂hm/∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−wmb) amounted to 8% and the lateral induction (−umb ⋅ ∇hm) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed hm that were incurred by the poleward shift of KE front.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaopei Lin, linxiaop@ouc.edu.cn

Abstract

The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth hm before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂hm/∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−wmb) amounted to 8% and the lateral induction (−umb ⋅ ∇hm) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed hm that were incurred by the poleward shift of KE front.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaopei Lin, linxiaop@ouc.edu.cn
Save
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192433, https://doi.org/10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614.

  • Bates, N. R., A. C. Pequignet, R. J. Johnson, and N. Gruber, 2002: A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature, 420, 489493, https://doi.org/10.1038/nature01253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnidov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018a: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, L. Chen, and S. A. Grodsky, 2018b: Improved global net surface heat flux. J. Geophys. Res. Oceans, 123, 31443163, https://doi.org/10.1002/2017JC013137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and D. Giglio, 2016: North Pacific subtropical mode water volume decrease in 2006–09 estimated from Argo observations: Influence of surface formation and basin-scale oceanic variability. J. Climate, 29, 21772199, https://doi.org/10.1175/JCLI-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, https://doi.org/10.1175/2008JCLI2306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., T. Qu, Y. N. Sasaki, and N. Schneider, 2010: Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans identified by an eddy-resolving ocean GCM. Geophys. Res. Lett., 37, L23608, https://doi.org/10.1029/2010GL045239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., 2008: The Kuroshio Extension Front from satellite sea surface temperature measurements. J. Oceanogr., 64, 891897, https://doi.org/10.1007/s10872-008-0073-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., K. Wei, W. Chen, and L. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos., 119, 78157832, https://doi.org/10.1002/2014JD021540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., X. Zhang, J. A. Church, C. S. Watson, M. A. King, D. Monselesan, B. Legresy, and C. Harig, 2017: The increasing rate of global mean sea-level rise during 1993–2014. Nat. Climate Change, 7, 492497, https://doi.org/10.1038/NCLIMATE3325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1987: Subduction. Dynamics of the Oceanic Surface Mixed Layer, P. Muller and D. Henderson, Eds., Hawaii Institute of Geophysics Special, 181–196.

  • Da Costa, M. V., H. Mercier, and A. M. Treguier, 2005: Efects of the mixed layer time variability on kinematic subduction rate diagnostics. J. Phys. Oceanogr., 35, 427443, https://doi.org/10.1175/JPO2693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Guo, and F. Lehner, 2017: The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett., 44, 79457954, https://doi.org/10.1002/2017GL074273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, https://doi.org/10.1175/2010JCLI3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., 1987: Interannual variations in the wintertime outcrop area of subtropical mode water in the western North Pacific Ocean. Atmos.–Ocean, 25, 358374, https://doi.org/10.1080/07055900.1987.9649280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hautala, S. L., and D. H. Roemmich, 1998: Subtropical mode water in the northeast Pacific basin. J. Geophys. Res., 103, 13 05513 066, https://doi.org/10.1029/98JC01015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hautala, S. L., D. H. Roemmich, and W. J. Schmitz Jr., 1994: Is the North Pacific in Sverdrup balance along 24°N? J. Geophys. Res., 99, 16 04116 052, https://doi.org/10.1029/94JC01084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, R. D., M. F. Andrade, M. B. Follette, and A. D. Frolov, 2006: The total ozone field separated into meteorological regimes-Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys., 6, 51835191, https://doi.org/10.5194/acp-6-5183-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz, P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101, 941976, https://doi.org/10.1029/95JC01674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., S. Schmidtko, and J. M. Lyman, 2012: Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density gradients. J. Geophys. Res., 117, C04015, https://doi.org/10.1029/2011JC007651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192, https://doi.org/10.1175/2008JCLI2690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kida, S., and Coauthors, 2015: Oceanic fronts and jets around Japan: A review. J. Oceanogr., 71, 469497, https://doi.org/10.1007/s10872-015-0283-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-Y., and Coauthors, 2020: Late-1980s regime shift in the formation of the North Pacific subtropical mode water. J. Geophys. Res. Oceans, 125, e2019JC015700, https://doi.org/10.1029/2019JC015700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobashi, F., H. Mitsudera, and S.-P. Xie, 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis. J. Geophys. Res., 111, C09033, https://doi.org/10.1029/2006JC003479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L., and R. X. Huang, 2012: The global subduction/obduction rates, their interannual and decadal variability. J. Climate, 25, 10961115, https://doi.org/10.1175/2011JCLI4228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and H. Hu, 2007: A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island. Geophys. Res. Lett., 34, L12710, https://doi.org/10.1029/2007GL029510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modelling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, https://doi.org/10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Masuzawa, J., 1969: Subtropical mode water. Deep-Sea Res. Oceanogr. Abstr., 16, 463472, https://doi.org/10.1016/0011-7471(69)90034-5.

  • Mathew, S. S., K. K. Kumar, and K. V. Subrahmanyam, 2016: Hadley cell dynamics in Japanese reanalysis-55 dataset: Evaluation using other reanalysis datasets and global radiosonde network observations. Climate Dyn., 47, 39173930, https://doi.org/10.1007/s00382-016-3051-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, https://doi.org/10.1175/2010JCLI3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsudera, H., and Coauthors, 2018: Low ocean-floor rises regulate subpolar sea surface temperature by forming baroclinic jets. Nat. Commun., 9, 1190, https://doi.org/10.1038/s41467-018-03526-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio Current system. J. Phys. Oceanogr., 13, 18471867, https://doi.org/10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Meteor., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P., 1975: Deepening of the wind-mixed layer. J. Mar. Res., 33, 405422.

  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19, 19701989, https://doi.org/10.1175/JCLI3793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, https://doi.org/10.1007/s10872-011-0032-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., B. Qiu, S. Kouketsu, K. Uehara, and T. Suga, 2012: Decadal seesaw of the central and subtropical mode water formation associated with the Kuroshio Extension variability. J. Oceanogr., 68, 355360, https://doi.org/10.1007/s10872-011-0098-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, E., and Coauthors, 2015: Decadal variability of Subtropical Mode Water subduction and its impact on biogeochemistry. J. Oceanogr., 71, 389400, https://doi.org/10.1007/s10872-015-0300-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Primeau, F., and P. Cessi, 2001: Coupling between wind-driven currents and midlatitude storm tracks. J. Climate, 14, 12431261, https://doi.org/10.1175/1520-0442(2001)014<1243:CBWDCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and R. X. Huang, 1995: Ventilation of the North Atlantic and North Pacific: Subduction versus obduction. J. Phys. Oceanogr., 25, 23742390, https://doi.org/10.1175/1520-0485(1995)025<2374:VOTNAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre and mesoscale eddies on decadal timescales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the formation of the North Pacific Subtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36, 13651380, https://doi.org/10.1175/JPO2918.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res., 57, 10981110, https://doi.org/10.1016/j.dsr2.2008.11.036.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, https://doi.org/10.1175/JCLI-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and N. Schneider, 2017: Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J. Climate, 30, 95919605, https://doi.org/10.1175/JCLI-D-17-0397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., S.-P. Xie, H. Mitsudera, and A. Ishida, 2002: Subduction of the North Pacific mode waters in a global high-resolution GCM. J. Phys. Oceanogr., 32, 746763, https://doi.org/10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichler, T., 2009: Changes in the atmospheric circulation as an indicator of climate change. Climate Change: Observed Impacts on Planet Earth, T. M. Letcher Eds., Elsevier, 145–164.

    • Crossref
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and S. Minobe, 2015: Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. J. Oceanogr., 71, 499509, https://doi.org/10.1007/s10872-014-0270-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, Y., S. Sugimoto, and K. Hanawa, 2014: Long-term variations of the Kuroshio Extension path in winter: Meridional movement and path state change. J. Climate, 27, 59295940, https://doi.org/10.1175/JCLI-D-13-00641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H. 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suga, T., Y. Takei, and K. Hanawa, 1997: Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the Subtropical Mode Water. J. Phys. Oceanogr., 27, 140152, https://doi.org/10.1175/1520-0485(1997)027<0140:TDITNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2005: Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys. Res. Lett., 32, L01606, https://doi.org/10.1029/2004GL021410.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2010: Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys. Res. Lett., 37, L03606, https://doi.org/10.1029/2009GL041795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and S. I. Kako, 2016: Decadal variation in winter mixed layer depth south of the Kuroshio Extension and its influence on winter mixed layer temperature. J. Climate, 29, 12371252, https://doi.org/10.1175/JCLI-D-15-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., K. Hanawa, T. Watanabe, T. Suga, and S.-P. Xie, 2017: Enhanced warming of the subtropical mode water in the North Pacific and North Atlantic. Nat. Climate Change, 7, 656658, https://doi.org/10.1038/nclimate3371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean: With application to the equatorial currents in the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2 and net sea-air CO2 flux over the global oceans. Deep-Sea Res. I, 56, 20752076, https://doi.org/10.1016/j.dsr.2009.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulation. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 22 pp., https://doi.org/10.1029/GM112p0001.

    • Crossref
    • Export Citation
  • Wang, J., H. M. Kim, and E. K. M. Chang, 2017: Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Climate, 30, 37053724, https://doi.org/10.1175/JCLI-D-16-0650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, Z. B., H. B. Hu, Z. Y. Song and Z. Y. Wang, 2019: Different influences of mesoscale oceanic eddies on the North Pacific subsurface low potential vorticity water mass between winter and summer. J. Geophys. Res. Oceans, 125, e2019JC015333, https://doi.org/10.1029/2019JC015333.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., M. Spall, and J. C. Marshall, 1995: Does Stommel’s mixed layer “demon” work? J. Phys. Oceanogr., 25, 30893102, https://doi.org/10.1175/1520-0485(1995)025<3089:DSMLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and B. Qiu, 2018: Meridional shift of the Oyashio Extension front in the past 36 years. Geophys. Res. Lett., 45, 90429048, https://doi.org/10.1029/2018GL078433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and B. Qiu, 2019: On the seasonal variability of the Oyashio Extension fronts. Climate Dyn., 53, 70117025, https://doi.org/10.1007/s00382-019-04972-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and L. Yu, 2020a: North Pacific subtropical mode water controlled by the Atlantic Multi-Decadal Variability. Nat. Climate Change, 10, 238243, https://doi.org/10.1038/s41558-020-0692-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., X. Lin, and L. Yu, 2020b: The decadal to multidecadal variability of mixed layer in the South of Kuroshio Extension region. J. Climate, 33, 76977714, https://doi.org/10.1175/JCLI-D-20-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, https://doi.org/10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., L. Xu, Q. Liu, and F. Kobashi, 2011: Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J. Climate, 24, 12121225, https://doi.org/10.1175/2010JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, Q. Liu, and F. Kobashi, 2011: Response of the North Pacific subtropical countercurrent and its variability to global warming. J. Oceanogr., 68, 127137, https://doi.org/10.1007/s10872-011-0031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, and Q. Liu, 2012: Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. J. Geophys. Res., 117, C12009, https://doi.org/10.1029/2012JC008377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., S.-P. Xie, J. L. McClean, Q. Liu, and H. Sasaki, 2014: Mesoscale eddy effects on the subduction of North Pacific mode waters. J. Geophys. Res., 119, 48674886, https://doi.org/10.1002/2014JC009861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, W. Wei, M. Dima, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming. J. Geophys. Res. Oceans, 121, 49284945, https://doi.org/10.1002/2015JC011513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., B. Qiu, P. Chang, L. Wu, S. Wang, Z. Chen, and Y. Yang, 2018: Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. J. Geophys. Res. Oceans, 123, 66536669, https://doi.org/10.1029/2018JC014081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and Coauthors, 2020a: Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett., 47, e2019GL085868, https://doi.org/10.1029/2019GL085868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., X. Lin, S. Xie, Y. Zhang, Y. Kosaka, and Z. Li, 2020b: Synchronized tropical Pacific and extratropical variability during the past three decades. Nat. Climate Change, 10, 422427, https://doi.org/10.1038/s41558-020-0753-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and H. Liu, 2018: Poleward shift in ventilation of the North Atlantic subtropical underwater. Geophys. Res. Lett., 45, 258266, https://doi.org/10.1002/2017GL075772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., X. Lin, C. Zhang, and Y. Guo, 2019: Subtropical countercurrent variations in cooling climates induced by freshwater forcing over the subarctic North Atlantic. Climate Dyn., 52, 27992812, https://doi.org/10.1007/s00382-018-4293-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 434 0 0
Full Text Views 1628 746 30
PDF Downloads 1261 408 35