• Alford, M. H., 2003a: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003b: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, https://doi.org/10.1175/JPO3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althaus, A. M., E. Kunze, and T. B. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527, https://doi.org/10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., and Coauthors, 2017: Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. J. Geophys. Res. Oceans, 122, 18821900, https://doi.org/10.1002/2016JC012184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, O., and W. R. Young, 2020: Penetration of wind-generated near-inertial waves into a turbulent ocean. J. Phys. Oceanogr., 50, 16991716, https://doi.org/10.1175/JPO-D-19-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balem, K., 2019: Surface effects on long-ranger moored ADCP (RREX case study). Ifremer Tech. Rep., 14 pp., https://archimer.ifremer.fr/doc/00495/60624/.

  • Becker, J., and Coauthors, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355371, https://doi.org/10.1080/01490410903297766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975a: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, https://doi.org/10.1017/S0022112075000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975b: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A., and H. Furey, 2017: Iceland-Scotland overflow water transport variability through the Charlie-Gibbs fracture zone and the impact of the North Atlantic current. J. Geophys. Res. Oceans, 122, 69897012, https://doi.org/10.1002/2017JC012698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branellec, P., and V. Thierry, 2016: RREX 2015: CTD-O2 Data report. Ifremer Tech. Rep., 357 pp., https://doi.org/10.13155/47156.

    • Crossref
    • Export Citation
  • Branellec, P., and V. Thierry, 2018: RREX 2017: CTD-O2 Data report. Ifremer Tech. Rep., 345 pp., https://doi.org/10.13155/58074.

    • Crossref
    • Export Citation
  • Bühler, O., and M. Holmes-Cerfon, 2011: Decay of an internal tide due to random topography in the ocean. J. Fluid Mech., 678, 271293, https://doi.org/10.1017/jfm.2011.115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiswell, S. M., 2006: Altimeter and current meter observations of internal tides: Do they agree? J. Phys. Oceanogr., 36, 18601872, https://doi.org/10.1175/JPO2944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clément, L., A. M. Thurnherr, and L. C. St. Laurent, 2017: Turbulent mixing in a deep fracture zone on the Mid-Atlantic Ridge. J. Phys. Oceanogr., 47, 18731896, https://doi.org/10.1175/JPO-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copernicus, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fer, I., A. Bosse, B. Ferron, and P. Bouruet-Aubertot, 2018: The dissipation of kinetic energy in the Lofoten basin eddy. J. Phys. Oceanogr., 48, 12991316, https://doi.org/10.1175/JPO-D-17-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernández-Castro, B., D. G. Evans, E. Frajka-Williams, C. Vic, and A. C. Naveira Garabato, 2020: Breaking of internal waves and turbulent dissipation in an anticyclonic mode water eddy. J. Phys. Oceanogr., 50, 18931914, https://doi.org/10.1175/JPO-D-19-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., F. Kokoszka, H. Mercier, P. Lherminier, T. Huck, A. Rios, and V. Thierry, 2016: Variability of the turbulent kinetic energy dissipation along the A25 Greenland–Portugal transect repeated from 2002 to 2012. J. Phys. Oceanogr., 46, 19892003, https://doi.org/10.1175/JPO-D-15-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flexas, M. M., A. F. Thompson, H. S. Torres, P. Klein, J. T. Farrar, H. Zhang, and D. Menemenlis, 2019: Global estimates of the energy transfer from the wind to the ocean, with emphasis on near-inertial oscillations. J. Geophys. Res. Oceans, 124, 57235746, https://doi.org/10.1029/2018JC014453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971, https://doi.org/10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104119, https://doi.org/10.1175/JPO-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://www.ecmwf.int/sites/default/files/elibrary/2019/19027-global-reanalysis-goodbye-era-interim-hello-era5.pdf.

  • Jouanno, J., X. Capet, G. Madec, G. Roullet, and P. Klein, 2016: Dissipation of the energy imparted by mid-latitude storms in the Southern Ocean. Ocean Sci., 12, 743769, https://doi.org/10.5194/os-12-743-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. M. Toole, P. Klein, and L. N. Thomas, 2013: A near-inertial mode observed within a Gulf Stream warm-core ring. J. Geophys. Res. Oceans, 118, 17971806, https://doi.org/10.1002/jgrc.20141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, https://doi.org/10.1175/JPO2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhler, J., M. Walter, C. Mertens, J. Stiehler, Z. Li, Z. Zhao, J.-S. von Storch, and M. Rhein, 2019: Energy flux observations in an internal tide beam in the eastern North Atlantic. J. Geophys. Res. Oceans, 124, 57475764, https://doi.org/10.1029/2019JC015156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957, https://doi.org/10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahaye, N., and S. G. Llewellyn Smith, 2020: Modal analysis of internal wave propagation and scattering over large-amplitude topography. J. Phys. Oceanogr., 50, 305321, https://doi.org/10.1175/JPO-D-19-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Boyer, A., M. H. Alford, R. Pinkel, T. D. Hennon, Y. J. Yang, D. Ko, and J. Nash, 2020: Frequency shift of near-inertial waves in the South China Sea. J. Phys. Oceanogr., 50, 11211135, https://doi.org/10.1175/JPO-D-19-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Corre, M., J. Gula, and A. M. Tréguier, 2020: Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model. Ocean Sci., 16, 451468, https://doi.org/10.5194/os-16-451-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.-K., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, https://doi.org/10.1029/97JC03200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R., and Coauthors, 2018: Temperature. Vol. 1, World Ocean Atlas 2018, NOAA Atlas NESDIS 81, 52 pp., https://data.nodc.noaa.gov/woa/WOA18/DOC/woa18_vol1.pdf.

  • Lozier, M., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • Merrifield, M. A., P. E. Holloway, and T. S. Johnston, 2001: The generation of internal tides at the Hawaiian Ridge. Geophys. Res. Lett., 28, 559562, https://doi.org/10.1029/2000GL011749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, https://doi.org/10.1029/2004JC002487.

  • Nycander, J., 2006: Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech., 567, 415432, https://doi.org/10.1017/S002211200600228X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., F. Pollmann, and C. Eden, 2020: On PSI interactions in internal gravity wave fields and the decay of baroclinic tides. J. Phys. Oceanogr., 50, 751771, https://doi.org/10.1175/JPO-D-19-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petit, T., H. Mercier, and V. Thierry, 2018: First direct estimates of volume and water mass transports across the Reykjanes Ridge. J. Geophys. Res. Oceans, 123, 67036719, https://doi.org/10.1029/2018JC013999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petit, T., H. Mercier, and V. Thierry, 2019: New insight into the formation and evolution of the East Reykjanes Ridge current and Irminger current. J. Geophys. Res. Oceans, 124, 91719189, https://doi.org/10.1029/2019JC015546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piron, A., V. Thierry, H. Mercier, and G. Caniaux, 2017: Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014–2015. Geophys. Res. Lett., 44, 14391447, https://doi.org/10.1002/2016GL071895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollmann, F., J. Nycander, C. Eden, and D. Olbers, 2019: Resolving the horizontal direction of internal tide generation. J. Fluid Mech., 864, 381407, https://doi.org/10.1017/jfm.2019.9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246, https://doi.org/10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, T. Arsouze, G. Madec, and J. C. McWilliams, 2020: Recipes for how to force oceanic model dynamics. J. Adv. Model. Earth Syst., 12, e2019MS001715, https://doi.org/10.1029/2019MS001715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silverthorne, K. E., and J. M. Toole, 2009: Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr., 39, 10351049, https://doi.org/10.1175/2008JPO3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., A. C. Naveira Garabato, J. A. M. Green, C. Spingys, A. Forryan, Z. Zhao, and J. Sharples, 2018: The lifecycle of semidiurnal internal tides over the northern Mid-Atlantic Ridge. J. Phys. Oceanogr., 48, 6180, https://doi.org/10.1175/JPO-D-17-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2018: Observations of the Tasman Sea internal tide beam. J. Phys. Oceanogr., 48, 12831297, https://doi.org/10.1175/JPO-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WAVEWATCH III Development Group, 2016: User manual and system documentation of WAVEWATCH III version 5.16. NOAA/NWS/NCEP/MMAB Tech. Rep., 361 pp., https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf.

  • Whalen, C. B., J. MacKinnon, and L. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., C. de Lavergne, A. C. Naveira Garabato, J. M. Klymak, J. A. MacKinnon, and K. L. Sheen, 2020: Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ., 1, 606621, https://doi.org/10.1038/s43017-020-0097-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2018: Salinity. Vol. 2, World Ocean Atlas 2018, NOAA Atlas NESDIS 82, 50 pp., https://data.nodc.noaa.gov/woa/WOA18/DOC/woa18_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 173 173 21
Full Text Views 68 68 18
PDF Downloads 88 88 25

Tidal and Near-Inertial Internal Waves over the Reykjanes Ridge

View More View Less
  • 1 Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Plouzané, France
© Get Permissions
Restricted access

Abstract

Internal waves in the semidiurnal and near-inertial bands are investigated using an array of seven moorings located over the Reykjanes Ridge in a cross-ridge direction (57.6°–59.1°N, 28.5°–33.3°W). Continuous measurements of horizontal velocity and temperature for more than 2 years allow us to estimate the kinetic energy density and the energy fluxes of the waves. We found that there is a remarkable phase locking and linear relationship between the semidiurnal energy density and the tidal energy conversion at the spring–neap cycle. The energy-to-conversion ratio gives replenishment time scales of 4–5 days on the ridge top versus 7–9 days on the flanks. Altogether, these results demonstrate that the bulk of the tidal energy on the ridge comes from near-local sources, with a redistribution of energy from the top to the flanks, which is endorsed by the energy fluxes oriented in the cross-ridge direction. Implications for tidally driven energy dissipation are discussed. The time-averaged near-inertial kinetic energy is smaller than the semidiurnal kinetic energy by a factor of 2–3 but is much more variable in time. It features a strong seasonal cycle with a winter intensification and subseasonal peaks associated with local wind bursts. The ratio of energy to wind work gives replenishment time scales of 13–15 days, which is consistent with the short time scales of observed variability of near-inertial energy. In the upper ocean (1 km), the highest levels of near-inertial energy are preferentially found in anticyclonic structures, with a twofold increase relative to cyclonic structures, illustrating the funneling effect of anticyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clément Vic, cvic@univ-brest.fr

Abstract

Internal waves in the semidiurnal and near-inertial bands are investigated using an array of seven moorings located over the Reykjanes Ridge in a cross-ridge direction (57.6°–59.1°N, 28.5°–33.3°W). Continuous measurements of horizontal velocity and temperature for more than 2 years allow us to estimate the kinetic energy density and the energy fluxes of the waves. We found that there is a remarkable phase locking and linear relationship between the semidiurnal energy density and the tidal energy conversion at the spring–neap cycle. The energy-to-conversion ratio gives replenishment time scales of 4–5 days on the ridge top versus 7–9 days on the flanks. Altogether, these results demonstrate that the bulk of the tidal energy on the ridge comes from near-local sources, with a redistribution of energy from the top to the flanks, which is endorsed by the energy fluxes oriented in the cross-ridge direction. Implications for tidally driven energy dissipation are discussed. The time-averaged near-inertial kinetic energy is smaller than the semidiurnal kinetic energy by a factor of 2–3 but is much more variable in time. It features a strong seasonal cycle with a winter intensification and subseasonal peaks associated with local wind bursts. The ratio of energy to wind work gives replenishment time scales of 13–15 days, which is consistent with the short time scales of observed variability of near-inertial energy. In the upper ocean (1 km), the highest levels of near-inertial energy are preferentially found in anticyclonic structures, with a twofold increase relative to cyclonic structures, illustrating the funneling effect of anticyclones.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clément Vic, cvic@univ-brest.fr
Save