Numerical Simulations of Melt-Driven Double-Diffusive Fluxes in a Turbulent Boundary Layer beneath an Ice Shelf

Leo Middleton Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Leo Middleton in
Current site
Google Scholar
PubMed
Close
,
Catherine A. Vreugdenhil Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
Department of Mechanical Engineering, University of Melbourne, Melbourne, Victoria, Australia

Search for other papers by Catherine A. Vreugdenhil in
Current site
Google Scholar
PubMed
Close
,
Paul R. Holland British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Paul R. Holland in
Current site
Google Scholar
PubMed
Close
, and
John R. Taylor Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by John R. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The transport of heat and salt through turbulent ice shelf–ocean boundary layers is a large source of uncertainty within ocean models of ice shelf cavities. This study uses small-scale, high-resolution, 3D numerical simulations to model an idealized boundary layer beneath a melting ice shelf to investigate the influence of ambient turbulence on double-diffusive convection (i.e., convection driven by the difference in diffusivities between salinity and temperature). Isotropic turbulence is forced throughout the simulations and the temperature and salinity are initialized with homogeneous values similar to observations. The initial temperature and the strength of forced turbulence are varied as controlling parameters within an oceanographically relevant parameter space. Two contrasting regimes are identified. In one regime double-diffusive convection dominates, and in the other convection is inhibited by the forced turbulence. The convective regime occurs for high temperatures and low turbulence levels, where it is long lived and affects the flow, melt rate, and melt pattern. A criterion for identifying convection in terms of the temperature and salinity profiles, and the turbulent dissipation rate, is proposed. This criterion may be applied to observations and theoretical models to quantify the effect of double-diffusive convection on ice shelf melt rates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Taylor, j.r.taylor@damtp.cam.ac.uk

Abstract

The transport of heat and salt through turbulent ice shelf–ocean boundary layers is a large source of uncertainty within ocean models of ice shelf cavities. This study uses small-scale, high-resolution, 3D numerical simulations to model an idealized boundary layer beneath a melting ice shelf to investigate the influence of ambient turbulence on double-diffusive convection (i.e., convection driven by the difference in diffusivities between salinity and temperature). Isotropic turbulence is forced throughout the simulations and the temperature and salinity are initialized with homogeneous values similar to observations. The initial temperature and the strength of forced turbulence are varied as controlling parameters within an oceanographically relevant parameter space. Two contrasting regimes are identified. In one regime double-diffusive convection dominates, and in the other convection is inhibited by the forced turbulence. The convective regime occurs for high temperatures and low turbulence levels, where it is long lived and affects the flow, melt rate, and melt pattern. A criterion for identifying convection in terms of the temperature and salinity profiles, and the turbulent dissipation rate, is proposed. This criterion may be applied to observations and theoretical models to quantify the effect of double-diffusive convection on ice shelf melt rates.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Taylor, j.r.taylor@damtp.cam.ac.uk
Save
  • Begeman, C. B., and Coauthors, 2018: Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone. J. Geophys. Res. Oceans, 123, 74387452, https://doi.org/10.1029/2018JC013987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, J. R., T. Sommer, and A. Wüest, 2012: Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech., 711, 411436, https://doi.org/10.1017/jfm.2012.399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crapper, P., 1976: Fluxes of heat and salt across a diffusive interface in the presence of grid generated turbulence. Int. J. Heat Mass Transf., 19, 13711378, https://doi.org/10.1016/0017-9310(76)90065-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, P. E., and K. W. Nicholls, 2019: Turbulence observations beneath Larsen C ice shelf, Antarctica. J. Geophys. Res. Oceans, 124, 55295550, https://doi.org/10.1029/2019JC015164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, F. C., 1950: Radially symmetric phase growth controlled by diffusion. Proc. Roy. Soc., 201A, 586599, https://doi.org/10.1098/rspa.1950.0080.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., R. W. Griffiths, and R. C. Kerr, 2016: Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech., 798, 284298, https://doi.org/10.1017/jfm.2016.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans, 118, 39663977, https://doi.org/10.1002/jgrc.20294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickel, S., N. Adams, and N. Mansour, 2007: Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing. Phys. Fluids, 19, 095102, https://doi.org/10.1063/1.2770522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., A. Jenkins, and D. M. Holland, 2010: Ice and ocean processes in the Bellingshausen Sea, Antarctica. J. Geophys. Res., 115, C05020, https://doi.org/10.1029/2008JC005219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, R., H. Yamazaki, F. Wolk, T. Kono, and J. Yoshida, 2007: An estimation of buoyancy flux for a mixture of turbulence and double diffusion. J. Phys. Oceanogr., 37, 611624, https://doi.org/10.1175/JPO2996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., K. W. Nicholls, and H. F. Corr, 2010: Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr., 40, 22982312, https://doi.org/10.1175/2010JPO4317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keitzl, T., J. P. Mellado, and D. Notz, 2016: Reconciling estimates of the ratio of heat and salt fluxes at the ice–ocean interface. J. Geophys. Res. Oceans, 121, 84198433, https://doi.org/10.1002/2016JC012018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., K. W. Nicholls, and E. Venables, 2015: Estimation of ice shelf melt rate in the presence of a thermohaline staircase. J. Phys. Oceanogr., 45, 133148, https://doi.org/10.1175/JPO-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., and P. Kauffman, 1977: An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. J. Phys. Oceanogr., 7, 272283, https://doi.org/10.1175/1520-0485(1977)007<0272:AEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., G. A. Maykut, and J. H. Morison, 1987: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 70177031, https://doi.org/10.1029/JC092iC07p07017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 2000: Origin of thermohaline staircases. J. Phys. Oceanogr., 30, 10461068, https://doi.org/10.1175/1520-0485(2000)030<1046:OOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, L., and J. Taylor, 2020: A general criterion for the release of background potential energy through double diffusion. J. Fluid Mech., 893, R3, https://doi.org/10.1017/jfm.2020.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1971: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci., 28, 1074, https://doi.org/10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O., 1972: Turbulence in a strongly stratified fluid––Is it unstable? Deep-Sea Res. Oceanogr. Abstr., 19, 7981, https://doi.org/10.1016/0011-7471(72)90074-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2013: Double-Diffusive Convection. Cambridge University Press, 344 pp.

  • Rao, K., and S. de Bruyn Kops, 2011: A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow. Phys. Fluids, 23, 065110, https://doi.org/10.1063/1.3599704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, https://doi.org/10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scalo, C., U. Piomelli, and L. Boegman, 2012: Large-eddy simulation of oxygen transfer to organic sediment beds. J. Geophys. Res., 117, 6005, https://doi.org/10.1029/2011JC007289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibley, N., and M.-L. Timmermans, 2019: The formation of double-diffusive layers in a weakly turbulent environment. J. Geophys. Res. Oceans, 124, 14451458, https://doi.org/10.1029/2018JC014625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13271342, https://doi.org/10.1063/1.870385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and R. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, https://doi.org/10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 212 pp.

  • Taylor, J. R., and R. Stocker, 2012: Trade-offs of chemotactic foraging in turbulent water. Science, 338, 675679, https://doi.org/10.1126/science.1219417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., S. M. de Bruyn Kops, C. P. Caulfield, and P. F. Linden, 2019: Testing the assumptions underlying ocean mixing methodologies using direct numerical simulations. J. Phys. Oceanogr., 49, 27612779, https://doi.org/10.1175/JPO-D-19-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 1968: The behaviour of a stable salinity gradient heated from below. J. Fluid Mech., 33, 183200, https://doi.org/10.1017/S0022112068002442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, E., K. Nicholls, F. Wolk, K. Makinson, and P. Anker, 2014: Measuring turbulent dissipation rates beneath an Antarctic ice shelf. Mar. Technol. Soc. J., 48, 1824, https://doi.org/10.4031/MTSJ.48.5.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1965: On finite amplitude instability in thermohaline convection. J. Mar. Res., 23 (1), 117.

  • Vreugdenhil, C. A., and J. R. Taylor, 2018: Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Phys. Fluids, 30, 085104, https://doi.org/10.1063/1.5037039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, C. A., and J. R. Taylor, 2019: Stratification effects in the turbulent boundary layer beneath a melting ice shelf: Insights from resolved large-eddy simulations. J. Phys. Oceanogr., 49, 19051925, https://doi.org/10.1175/JPO-D-18-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., S. Chen, J. G. Brasseur, and J. C. Wyngaard, 1996: Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part I: Velocity field. J. Fluid Mech., 309, 113156, https://doi.org/10.1017/S0022112096001589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 789 0 0
Full Text Views 1172 418 36
PDF Downloads 728 222 27