• Alberty, M. S., S. Billheimer, M. M. Hamann, C. Y. Ou, V. Tamsitt, A. J. Lucas, and M. H. Alford, 2017: A reflecting, steepening, and breaking internal tide in a submarine canyon. J. Geophys. Res. Oceans, 122, 68726882, https://doi.org/10.1002/2016JC012583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832, https://doi.org/10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007a: Global patterns of low-mode internal-wave propagation, Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, https://doi.org/10.1175/JPO3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007b: Global patterns of low-mode internal-wave propagation, Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858, https://doi.org/10.1175/JPO3086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and P. MacCready, 2014: Flow and mixing in Juan de Fuca Canyon, Washington. Geophys. Res. Lett., 41, 16081615, https://doi.org/10.1002/2013GL058967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018, https://doi.org/10.1175/JPO2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and et al. , 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, https://doi.org/10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S., and X. Durrieu de Madron, 2009: A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci., 5, 607620, https://doi.org/10.5194/osd-6-1369-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S., and B. Hickey, 2010: Dynamics of advection-driven upwelling over a shelf break submarine canyon. J. Geophys. Res., 115, C08018, https://doi.org/10.1029/2009JC005731.

    • Search Google Scholar
    • Export Citation
  • Allen, S. E., C. Vindeirinho, R. E. Thomson, M. G. Foreman, and D. L. Mackas, 2001: Physical and biological processes over a submarine canyon during an upwelling event. Can. J. Fish. Aquat. Sci., 58, 671684, https://doi.org/10.1139/f01-008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aslam, T., R. A. Hall, and S. R. Dye, 2018: Internal tides in a dendritic submarine canyon. Prog. Oceanogr., 169, 2032, https://doi.org/10.1016/j.pocean.2017.10.005.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, https://doi.org/10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CDIP, 2020: Station 073 - Scripps Pier, La Jolla CA. Coastal Data Information Program, accessed 15 April 2019, http://www.cdip.ucsd.edu/themes/cdip?r=20&pb=1&d2=p70&u2=p_id:p70:mode:all:s:073:st:1:v:dw_download_table:dt:201907.

  • Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography, MIT Press, 504–548.

  • Denman, K., D. Mackas, H. Freeland, M. Austin, and S. Hill, 1981: Persistent upwelling and mesoscale zones of high productivity off the west coast of Vancouver Island, Canada. Coastal Upwelling, F. A. Richards, Ed., Coastal and Estuarine Sciences, Vol. 1, Amer. Geophys. Union, 514–521, https://doi.org/10.1029/CO001p0514.

    • Crossref
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B. H., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., and T. Garner, 2008: Determining Thorpe scales from ship-lowered CTD density profiles. J. Atmos. Oceanic Technol., 25, 16571670, https://doi.org/10.1175/2008JTECHO541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M. C., R. A. Hall, G. S. Carter, M. H. Alford, R. Lien, D. P. Winkel, and D. J. Wain, 2011: Flow and mixing in Ascension, a steep, narrow canyon. J. Geophys. Res., 116, C07016, https://doi.org/10.1029/2010JC006610.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., M. H. Alford, G. S. Carter, M. C. Gregg, R.-C. Lien, D. J. Wain, and Z. Zhao, 2014: Transition from partly standing to progressive internal tides in Monterey Submarine Canyon. Deep-Sea Res. II, 104, 164173, https://doi.org/10.1016/j.dsr2.2013.05.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R. A., T. Aslam, and V. A. Huvenne, 2017: Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider. Deep-Sea Res. I, 126, 7384, https://doi.org/10.1016/j.dsr.2017.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamann, M. M., M. H. Alford, and J. B. Mickett, 2018: Generation and propagation of nonlinear internal waves in sheared currents over the Washington Continental Shelf. J. Geophys. Res. Oceans, 123, 23812400, https://doi.org/10.1002/2017JC013388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619, https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, P. T., and T. Whiteway, 2011: Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol., 285, 6986, https://doi.org/10.1016/j.margeo.2011.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B., 1997: The response of a steep-sided, narrow canyon to time-variable wind forcing. J. Phys. Oceanogr., 27, 697726, https://doi.org/10.1175/1520-0485(1997)027<0697:TROASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B., E. Baker, and N. Kachel, 1986: Suspended particle movement in and around Quinault Submarine Canyon. Mar. Geol., 71, 3583, https://doi.org/10.1016/0025-3227(86)90032-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotchkiss, F. S., and C. Wunsch, 1982: Internal waves in Hudson Canyon with possible geological implications. Deep-Sea Res., 29, 415442, https://doi.org/10.1016/0198-0149(82)90068-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2009: On the interaction of time-variable flows with a Shelfbreak Canyon. J. Phys. Oceanogr., 39, 248260, https://doi.org/10.1175/2008JPO3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavanaugh, M., and et al. , 2015: Effect of continental shelf canyons on phytoplankton biomass and community composition along the western Antarctic peninsula. Mar. Ecol.: Prog. Ser., 524, 1126, https://doi.org/10.3354/meps11189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S., J. D. Nash, M. H. Alford, and K. I. Martini, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, https://doi.org/10.1175/JPO-D-11-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S., N. Jones, J. Nash, and A. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, https://doi.org/10.1002/grl.50872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., 1989: Geostrophic adjustment over submarine canyons. J. Geophys. Res., 94, 61336144, https://doi.org/10.1029/JC094iC05p06133.

  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913, https://doi.org/10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, https://doi.org/10.1175/JPO-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017gl075430.

  • Lee, I., R. Lien, J. T. Liu, and W. Chuang, 2009: Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. J. Mar. Syst., 76, 383396, https://doi.org/10.1016/j.jmarsys.2007.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and C. Winant, 1986: Subinertial currents on the Southern California Shelf. J. Phys. Oceanogr., 16, 17371750, https://doi.org/10.1175/1520-0485(1986)016<1737:SCOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. T., K.-j. Liu, and J. C. Huang, 2002: The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Mar. Geol., 181, 357386, https://doi.org/10.1016/s0025-3227(01)00219-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. D. Nash, E. Kunze, and M. A. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, https://doi.org/10.1029/2007GL029749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. L. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, https://doi.org/10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, https://doi.org/10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336, https://doi.org/10.1017/S0022112064001252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and X. Liu, 2000: Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J. Phys. Oceanogr., 30, 532549, https://doi.org/10.1175/1520-0485(2000)030<0532:SOIWAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, K. Polzin, J. Toole, and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal-wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarian, R. H., and S. Legg, 2017: Internal wave scattering in continental slope canyons, Part 1: Theory and development of a ray tracing algorithm. Ocean Modell., 118, 115, https://doi.org/10.1016/j.ocemod.2017.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: La Jolla, CA - station ID: 9410230. NOAA Tides and Currents, https://tidesandcurrents.noaa.gov/stationhome.html?id=9410230.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, https://doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petruncio, E. T., L. K. Rosenfeld, and J. D. Paduan, 1998: Observations of the internal tide in Monterey Canyon. J. Phys. Oceanogr., 28, 18731903, https://doi.org/10.1175/1520-0485(1998)028<1873:OOTITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. A. Goldin, J. A. Smith, O. M. Sun, A. A. Aja, M. N. Bui, and T. Hughen, 2011: The Wirewalker: A vertically profiling instrument carrier powered by ocean waves. J. Atmos. Oceanic Technol., 28, 426435, https://doi.org/10.1175/2010JTECHO805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and B. Cornuelle, 2013: Coastal numerical modelling of tides: Sensitivity to domain size and remotely generated internal tide. Ocean Modell., 62, 1726, https://doi.org/10.1016/j.ocemod.2012.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puig, P., A. Ogston, B. Mullenbach, C. Nittrouer, and R. Sternberg, 2003: Shelf-to-canyon sediment-transport processes on the eel continental margin (Northern California). Mar. Geol., 193, 129149, https://doi.org/10.1016/s0025-3227(02)00641-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2001: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. Oceanic Technol., 18, 10481051, https://doi.org/10.1175/1520-0426(2001)018<1048:WAAWPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodenborn, B., D. Kiefer, H. P. Zhang, and H. L. Swinney, 2011: Harmonic generation by reflecting internal waves. Phys. Fluids, 23, 026601, https://doi.org/10.1063/1.3553294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Send, U., and S. Nam, 2012: Relaxation from upwelling: The effect on dissolved oxygen on the continental shelf. J. Geophys. Res., 117, C04024, https://doi.org/10.1029/2011JC007517.

    • Search Google Scholar
    • Export Citation
  • Shepard, F., and D. Inman, 1950: Nearshore water circulation related to bottom topography and wave refraction. Eos, Trans. Amer. Geophys. Union, 31, 196212, https://doi.org/10.1029/TR031i002p00196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, 286A, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2001: Internal wave reflection and scatter from sloping rough topography. J. Phys. Oceanogr., 31, 537553, https://doi.org/10.1175/1520-0485(2001)031<0537:IWRASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, E. W., 1994: Hotspots of benthic production. Nature, 372, 47, https://doi.org/10.1038/372047a0.

  • Vetter, E. W., and P. Dayton, 1999: Organic enrichment by macrophyte detritus, and abundance patterns of megafaunal populations in submarine canyons. Mar. Ecol. Prog. Ser., 186, 137148, https://doi.org/10.3354/meps186137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vetter, E. W., C. R. Smith, and F. C. De Leo, 2010: Hawaiian hotspots: Enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii. Marine Ecology, 31, 183199, https://doi.org/10.1111/j.1439-0485.2009.00351.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wain, D. J., M. C. Gregg, M. H. Alford, R. C. Lien, G. S. Carter, and R. A. Hall, 2013: Propagation and dissipation of the internal tide in upper Monterey Canyon. J. Geophys. Res. Oceans, 118, 48554877, https://doi.org/10.1002/jgrc.20368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., S. E. Allen, and A. W. Bowie, 2009: Upwelling flow dynamics in long canyons at low Rossby number. J. Geophys. Res., 114, C05004, https://doi.org/10.1029/2008JC004956.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., J. A. Mackinnon, R. C. Musgrave, S. M. Kelly, A. Pickering, and J. Nash, 2017: Internal tide convergence and mixing in a submarine canyon. J. Phys. Oceanogr., 47, 303322, https://doi.org/10.1175/JPO-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarinal sill in the strait of Gibraltar. J. Geophys. Res., 99, 98479878, https://doi.org/10.1029/94JC00256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1968: On the propagation of internal waves up a slope. Deep-Sea Res., 15, 251258, https://doi.org/10.1016/0011-7471(68)90002-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and S. J. Lentz, 2017: Wind-driven circulation in a shelf valley. Part I: Mechanism of the asymmetrical response to along-shelf winds in opposite directions. J. Phys. Oceanogr., 47, 29272947, https://doi.org/10.1175/jpo-d-17-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., and S. J. Lentz, 2018: Wind-driven circulation in a shelf valley. Part II: Dynamics of the along-valley velocity and transport. J. Phys. Oceanogr., 48, 883904, https://doi.org/10.1175/jpo-d-17-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., T. F. Duda, and I. A. Udovydchenkov, 2014: Modeling and analysis of internal-tide generation and beamlike onshore propagation in the vicinity of shelfbreak canyons. J. Phys. Oceanogr., 44, 834849, https://doi.org/10.1175/JPO-D-13-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, R.-C. Lien, M. C. Gregg, and G. S. Carter, 2012: Internal tides and mixing in a submarine canyon with time-varying stratification. J. Phys. Oceanogr., 42, 21212142, https://doi.org/10.1175/JPO-D-12-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 192 192 20
Full Text Views 74 74 13
PDF Downloads 102 102 16

Turbulence Driven by Reflected Internal Tides in a Supercritical Submarine Canyon

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

The La Jolla Canyon System (LJCS) is a small, steep, shelf-incising canyon offshore of San Diego, California. Observations conducted in the fall of 2016 capture the dynamics of internal tides and turbulence patterns. Semidiurnal (D2) energy flux was oriented up-canyon; 62% ± 20% of the signal was contained in mode 1 at the offshore mooring. The observed mode-1 D2 tide was partly standing based on the ratio of group speed times energy cgE and energy flux F. Enhanced dissipation occurred near the canyon head at middepths associated with elevated strain arising from the standing wave pattern. Modes 2–5 were progressive, and energy fluxes associated with these modes were oriented down-canyon, suggesting that incident mode-1 waves were back-reflected and scattered. Flux integrated over all modes across a given canyon cross section was always onshore and generally decreased moving shoreward (from 240 ± 15 to 5 ± 0.3 kW), with a 50-kW increase in flux occurring on a section inshore of the canyon’s major bend, possibly due to reflection of incident waves from the supercritical sidewalls of the bend. Flux convergence from canyon mouth to head was balanced by the volume-integrated dissipation observed. By comparing energy budgets from a global compendium of canyons with sufficient observations (six in total), a similar balance was found. One exception was Juan de Fuca Canyon, where such a balance was not found, likely due to its nontidal flows. These results suggest that internal tides incident at the mouth of a canyon system are dissipated therein rather than leaking over the sidewalls or siphoning energy to other wave frequencies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Madeleine Hamann, mhamann@ucsd.edu

Abstract

The La Jolla Canyon System (LJCS) is a small, steep, shelf-incising canyon offshore of San Diego, California. Observations conducted in the fall of 2016 capture the dynamics of internal tides and turbulence patterns. Semidiurnal (D2) energy flux was oriented up-canyon; 62% ± 20% of the signal was contained in mode 1 at the offshore mooring. The observed mode-1 D2 tide was partly standing based on the ratio of group speed times energy cgE and energy flux F. Enhanced dissipation occurred near the canyon head at middepths associated with elevated strain arising from the standing wave pattern. Modes 2–5 were progressive, and energy fluxes associated with these modes were oriented down-canyon, suggesting that incident mode-1 waves were back-reflected and scattered. Flux integrated over all modes across a given canyon cross section was always onshore and generally decreased moving shoreward (from 240 ± 15 to 5 ± 0.3 kW), with a 50-kW increase in flux occurring on a section inshore of the canyon’s major bend, possibly due to reflection of incident waves from the supercritical sidewalls of the bend. Flux convergence from canyon mouth to head was balanced by the volume-integrated dissipation observed. By comparing energy budgets from a global compendium of canyons with sufficient observations (six in total), a similar balance was found. One exception was Juan de Fuca Canyon, where such a balance was not found, likely due to its nontidal flows. These results suggest that internal tides incident at the mouth of a canyon system are dissipated therein rather than leaking over the sidewalls or siphoning energy to other wave frequencies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Madeleine Hamann, mhamann@ucsd.edu
Save