Damping of Climate-Scale Oceanic Variability by Mesoscale Eddy Turbulence

F. Sévellec Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, IRD, Ifremer, Brest, France
Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

Search for other papers by F. Sévellec in
Current site
Google Scholar
PubMed
Close
,
A. C. Naveira Garabato Ocean and Earth Science, University of Southampton, Southampton, United Kingdom

Search for other papers by A. C. Naveira Garabato in
Current site
Google Scholar
PubMed
Close
, and
T. Huck Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, IRD, Ifremer, Brest, France

Search for other papers by T. Huck in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of mesoscale eddy turbulence on long-term, climatic variability in the ocean’s buoyancy structure is investigated using observations from a mooring deployed in the Drake Passage, Southern Ocean. By applying the temporal-residual-mean framework and characterizing the variance contributors and the buoyancy variance budget, we identify the main source and sink of long-term buoyancy variance. Long-term buoyancy variance amplitude is set by long-term vertical velocity fluctuations acting on the steady stratification. This baroclinic buoyancy flux is also the main source of the variance, indicative of the effect of large-scale baroclinic instability. This source is balanced by a sink of long-term buoyancy variance associated with the vertical advection of the steady stratification by the eddy-induced circulation. We conclude that mesoscale eddy turbulence acts as a damping mechanism for long-term, climatic variability in the region of the observations, consistent with an “eddy saturated” behavior of the Antarctic Circumpolar Current.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Sévellec, florian.sevellec@univ-brest.fr

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Abstract

The impact of mesoscale eddy turbulence on long-term, climatic variability in the ocean’s buoyancy structure is investigated using observations from a mooring deployed in the Drake Passage, Southern Ocean. By applying the temporal-residual-mean framework and characterizing the variance contributors and the buoyancy variance budget, we identify the main source and sink of long-term buoyancy variance. Long-term buoyancy variance amplitude is set by long-term vertical velocity fluctuations acting on the steady stratification. This baroclinic buoyancy flux is also the main source of the variance, indicative of the effect of large-scale baroclinic instability. This source is balanced by a sink of long-term buoyancy variance associated with the vertical advection of the steady stratification by the eddy-induced circulation. We conclude that mesoscale eddy turbulence acts as a damping mechanism for long-term, climatic variability in the region of the observations, consistent with an “eddy saturated” behavior of the Antarctic Circumpolar Current.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Sévellec, florian.sevellec@univ-brest.fr

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Save
  • Arbic, B. K., and Coauthors, 2014: Geostrophic turbulence in the frequency-wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36, 17031718, https://doi.org/10.1175/JPO2938.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., and Coauthors, 2013: Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean. J. Phys. Oceanogr., 43, 22882308, https://doi.org/10.1175/JPO-D-12-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and Coauthors, 2012: On the relationship between decadal buoyancy anomalies and variability of the Atlantic meridional overturning circulation. J. Climate, 25, 80098030, https://doi.org/10.1175/JCLI-D-11-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schalx, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, https://doi.org/10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, https://doi.org/10.1016/j.ocemod.2007.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation model. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, https://doi.org/10.1175/JCLI-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034, https://doi.org/10.1175/1520-0485(2000)030<2013:OTROTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. M. Selten, and S. S. Drijfhout, 2016: Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, https://doi.org/10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D., and A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows: Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, https://doi.org/10.1016/0377-0265(78)90009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Hochet, A., and Coauthors, 2020: Direct temporal cascade of temperature variance in eddy-permitting simulations of multidecadal variability. J. Climate, 33, 94099425, https://doi.org/10.1175/JCLI-D-19-0921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A, 526545, https://doi.org/10.3402/tellusa.v53i4.12225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., O. Arzel, and F. Sévellec, 2015: Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr., 45, 157173, https://doi.org/10.1175/JPO-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and C. W. Hughes, 2002: The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res., 60, 1945, https://doi.org/10.1357/002224002762341230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041, https://doi.org/10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and Coauthors, 2017: Eddy saturation and frictional control of the Antarctic circumpolar current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N., and Coauthors, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919, https://doi.org/10.1175/2009JTECHO672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J. and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • Meredith, M. P., 2011: Cruise report: RRS James Cook JC054 (DIMES UK2) 30 Nov 2010 to 8 Jan 2011. British Antarctic Survey Cruise Rep. 206 pp.

  • Meredith, M. P. and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., 2010: Cruise Report RRS James Cook JC041 (DIMES UK1) 5 Dec 2009 to 21 Dec 2009. National Oceanography Centre Southampton Cruise Rep. 164 pp.

  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic circumpolar current South of Australia. J. Phys. Oceanogr., 30, 30503076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg, Ed., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, John Wiley and Sons, 189–318.

  • Rossby, C. G., and Coauthors, 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, https://doi.org/10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R. B., 1978: Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn., 10, 2552, https://doi.org/10.1080/03091927808242628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R. B., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A. and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/S41612-018-0038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., and Coauthors, 2015: Intrinsic variability of sea level from global ocean simulations: Spatiotemporal scales. J. Climate, 28, 42794292, https://doi.org/10.1175/JCLI-D-14-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., and Coauthors, 2018: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study. J. Phys. Oceanogr., 48, 13851408, https://doi.org/10.1175/JPO-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183, https://doi.org/10.1175/JCLI-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and T. Huck, 2015: Theoretical investigation of the Atlantic multidecadal oscillation. J. Phys. Oceanogr., 45, 21892208, https://doi.org/10.1175/JPO-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and S. S. Drijfhout, 2019: The signal-to-noise paradox for interannual surface atmospheric temperature predictions. Geophys. Res. Lett., 46, 90319041, https://doi.org/10.1029/2019GL083855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, and M. Ben Jelloul, 2006: On the mechanism of centennial thermohaline oscillations. J. Mar. Res., 64, 355392, https://doi.org/10.1357/002224006778189608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and Coauthors, 2015: Vertical flow in the Southern Ocean estimated from individual moorings. J. Phys. Oceanogr., 45, 22092220, https://doi.org/10.1175/JPO-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and Coauthors, 2019: Observing the local emergence of the Southern Ocean residual-mean circulation. Geophys. Res. Lett., 46, 38623870, https://doi.org/10.1029/2018GL081382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, A., and R. P. Abernathey, 2016: Time scales of Southern Ocean eddy equilibration. J. Phys. Oceanogr., 46, 27852805, https://doi.org/10.1175/JPO-D-16-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. S. and J. M. Gregory, 2009: A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different regions of the North Atlantic. Geophys. Res. Lett., 36, L15701, https://doi.org/10.1029/2009GL038607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2013: Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett., 40, 31753179, https://doi.org/10.1002/grl.50541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2002: Ocean observations and the climate Forecast problem. Int. Geophys., 83, 233245, https://doi.org/10.1016/S0074-6142(02)80170-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 0 0
Full Text Views 463 141 10
PDF Downloads 418 109 13