• Arbic, B. K., and et al. , 2014: Geostrophic turbulence in the frequency-wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36, 17031718, https://doi.org/10.1175/JPO2938.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., and et al. , 2013: Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean. J. Phys. Oceanogr., 43, 22882308, https://doi.org/10.1175/JPO-D-12-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and et al. , 2012: On the relationship between decadal buoyancy anomalies and variability of the Atlantic meridional overturning circulation. J. Climate, 25, 80098030, https://doi.org/10.1175/JCLI-D-11-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schalx, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, https://doi.org/10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, https://doi.org/10.1016/j.ocemod.2007.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation model. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, https://doi.org/10.1175/JCLI-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. Hallberg, 2000: On the relationship of the circumpolar current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034, https://doi.org/10.1175/1520-0485(2000)030<2013:OTROTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. M. Selten, and S. S. Drijfhout, 2016: Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, https://doi.org/10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D., and A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows: Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, https://doi.org/10.1016/0377-0265(78)90009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Hochet, A., and et al. , 2020: Direct temporal cascade of temperature variance in eddy-permitting simulations of multidecadal variability. J. Climate, 33, 94099425, https://doi.org/10.1175/JCLI-D-19-0921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A, 526545, https://doi.org/10.3402/tellusa.v53i4.12225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., O. Arzel, and F. Sévellec, 2015: Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr., 45, 157173, https://doi.org/10.1175/JPO-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and C. W. Hughes, 2002: The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res., 60, 1945, https://doi.org/10.1357/002224002762341230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041, https://doi.org/10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and et al. , 2017: Eddy saturation and frictional control of the Antarctic circumpolar current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N., and et al. , 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919, https://doi.org/10.1175/2009JTECHO672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J. and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • Meredith, M. P., 2011: Cruise report: RRS James Cook JC054 (DIMES UK2) 30 Nov 2010 to 8 Jan 2011. British Antarctic Survey Cruise Rep. 206 pp.

  • Meredith, M. P. and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., 2010: Cruise Report RRS James Cook JC041 (DIMES UK1) 5 Dec 2009 to 21 Dec 2009. National Oceanography Centre Southampton Cruise Rep. 164 pp.

  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic circumpolar current South of Australia. J. Phys. Oceanogr., 30, 30503076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg, Ed., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, John Wiley and Sons, 189–318.

  • Rossby, C. G., and et al. , 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855, https://doi.org/10.1357/002224039806649023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R. B., 1978: Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn., 10, 2552, https://doi.org/10.1080/03091927808242628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R. B., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A. and D. Smith, 2018: A signal-to-noise paradox in climate science. npj Climate Atmos. Sci., 1, 28, https://doi.org/10.1038/S41612-018-0038-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., and et al. , 2015: Intrinsic variability of sea level from global ocean simulations: Spatiotemporal scales. J. Climate, 28, 42794292, https://doi.org/10.1175/JCLI-D-14-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., and et al. , 2018: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study. J. Phys. Oceanogr., 48, 13851408, https://doi.org/10.1175/JPO-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183, https://doi.org/10.1175/JCLI-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and T. Huck, 2015: Theoretical investigation of the Atlantic multidecadal oscillation. J. Phys. Oceanogr., 45, 21892208, https://doi.org/10.1175/JPO-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and S. S. Drijfhout, 2019: The signal-to-noise paradox for interannual surface atmospheric temperature predictions. Geophys. Res. Lett., 46, 90319041, https://doi.org/10.1029/2019GL083855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, and M. Ben Jelloul, 2006: On the mechanism of centennial thermohaline oscillations. J. Mar. Res., 64, 355392, https://doi.org/10.1357/002224006778189608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and et al. , 2015: Vertical flow in the Southern Ocean estimated from individual moorings. J. Phys. Oceanogr., 45, 22092220, https://doi.org/10.1175/JPO-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and et al. , 2019: Observing the local emergence of the Southern Ocean residual-mean circulation. Geophys. Res. Lett., 46, 38623870, https://doi.org/10.1029/2018GL081382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, A., and R. P. Abernathey, 2016: Time scales of Southern Ocean eddy equilibration. J. Phys. Oceanogr., 46, 27852805, https://doi.org/10.1175/JPO-D-16-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. S. and J. M. Gregory, 2009: A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different regions of the North Atlantic. Geophys. Res. Lett., 36, L15701, https://doi.org/10.1029/2009GL038607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2013: Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett., 40, 31753179, https://doi.org/10.1002/grl.50541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2002: Ocean observations and the climate Forecast problem. Int. Geophys., 83, 233245, https://doi.org/10.1016/S0074-6142(02)80170-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 154 154 22
Full Text Views 42 42 2
PDF Downloads 67 67 7

Damping of Climate-Scale Oceanic Variability by Mesoscale Eddy Turbulence

View More View Less
  • 1 Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, IRD, Ifremer, Brest, France
  • | 2 Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The impact of mesoscale eddy turbulence on long-term, climatic variability in the ocean’s buoyancy structure is investigated using observations from a mooring deployed in the Drake Passage, Southern Ocean. By applying the temporal-residual-mean framework and characterizing the variance contributors and the buoyancy variance budget, we identify the main source and sink of long-term buoyancy variance. Long-term buoyancy variance amplitude is set by long-term vertical velocity fluctuations acting on the steady stratification. This baroclinic buoyancy flux is also the main source of the variance, indicative of the effect of large-scale baroclinic instability. This source is balanced by a sink of long-term buoyancy variance associated with the vertical advection of the steady stratification by the eddy-induced circulation. We conclude that mesoscale eddy turbulence acts as a damping mechanism for long-term, climatic variability in the region of the observations, consistent with an “eddy saturated” behavior of the Antarctic Circumpolar Current.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Sévellec, florian.sevellec@univ-brest.fr

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Abstract

The impact of mesoscale eddy turbulence on long-term, climatic variability in the ocean’s buoyancy structure is investigated using observations from a mooring deployed in the Drake Passage, Southern Ocean. By applying the temporal-residual-mean framework and characterizing the variance contributors and the buoyancy variance budget, we identify the main source and sink of long-term buoyancy variance. Long-term buoyancy variance amplitude is set by long-term vertical velocity fluctuations acting on the steady stratification. This baroclinic buoyancy flux is also the main source of the variance, indicative of the effect of large-scale baroclinic instability. This source is balanced by a sink of long-term buoyancy variance associated with the vertical advection of the steady stratification by the eddy-induced circulation. We conclude that mesoscale eddy turbulence acts as a damping mechanism for long-term, climatic variability in the region of the observations, consistent with an “eddy saturated” behavior of the Antarctic Circumpolar Current.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: F. Sévellec, florian.sevellec@univ-brest.fr

This article is included in the The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) Special Collection.

Save