• Ascani, F., E. Firing, P. Dutrieux, J. P. McCreary, and A. Ishida, 2010: Deep equatorial ocean circulation induced by a forced–dissipated Yanai beam. J. Phys. Oceanogr., 40, 11181142, https://doi.org/10.1175/2010JPO4356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., C. Provost, B. L. Hua, and A. Kartavtseff, 2008: Variability at intermediate depths at the equator in the Atlantic Ocean in 2000–06: Annual cycle, equatorial deep jets, and intraseasonal meridional velocity fluctuations. J. Phys. Oceanogr., 38, 17941806, https://doi.org/10.1175/2008JPO3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connaughton, C. P., B. T. Nadiga, S. V. Nazarenko, and B. E. Quinn, 2010: Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech., 654, 207231, https://doi.org/10.1017/S0022112010000510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10, 11681186, https://doi.org/10.1175/1520-0485(1980)010<1168:GAPODW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., W. S. Kessler, and F. Marin, 2012: Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J. Phys. Oceanogr., 42, 14751485, https://doi.org/10.1175/JPO-D-11-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cravatte, S., E. Kestenare, F. Marin, P. Dutrieux, and E. Firing, 2017: Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: Paths and vertical structure. J. Phys. Oceanogr., 47, 23052324, https://doi.org/10.1175/JPO-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delpech, A., S. Cravatte, F. Marin, Y. Morel, E. Gronchi, and E. Kestenare, 2020a: Observed tracer fields structuration by middepth zonal jets in the tropical Pacific. J. Phys. Oceanogr., 50, 281304, https://doi.org/10.1175/JPO-D-19-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delpech, A., S. Cravatte, F. Marin, Y. Morel, and C. Menesguen, 2020b: Deep eddy kinetic energy in the tropical pacific from Lagrangian floats. J. Geophys. Res. Oceans, 125, e2020JC016313, https://doi.org/10.1029/2020JC016313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., B. L. Hua, and H. Sasaki, 2007: Equatorial deep jets triggered by a large vertical scale variability within the western boundary layer. J. Mar. Res., 65, 125, https://doi.org/10.1357/002224007780388720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D., and R. Scott, 2011: Jet sharpening by turbulent mixing. Philos. Trans. Roy. Soc. London, 369A, 754770, https://doi.org/10.1098/rsta.2010.0306.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., and J. G. Richman, 1988: An estimate of equatorial wave energy flux at 9- to 90-day periods in the central Pacific. J. Geophys. Res., 93, 15 45515 466, https://doi.org/10.1029/JC093iC12p15455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., 2011: Barotropic Rossby waves radiating from tropical instability waves in the Pacific Ocean. J. Phys. Oceanogr., 41, 11601181, https://doi.org/10.1175/2011JPO4547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and R. A. Weller, 2006: Intraseasonal variability near 10°N in the eastern tropical Pacific Ocean. J. Geophys. Res., 111, C05015, https://doi.org/10.1029/2005JC002989.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and T. S. Durland, 2012: Wavenumber–frequency spectra of inertia–gravity and mixed Rossby–gravity waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 42, 18591881, https://doi.org/10.1175/JPO-D-11-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., 1987: Deep zonal currents in the central equatorial Pacific. J. Mar. Res., 45, 791812, https://doi.org/10.1357/002224087788327163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., S. E. Wijffels, and P. Hacker, 1998: Equatorial subthermocline currents across the pacific. J. Geophys. Res., 103, 21 41321 423, https://doi.org/10.1029/98JC01944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargour, C., M. Gabrea, V. Ramachandran, and J.-M. Lina, 2009: A short introduction to wavelets and their applications. IEEE Circuits Syst. Mag., 9, 5768, https://doi.org/10.1109/MCAS.2009.932556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1974: The stability of planetary waves on an infinite beta-plane. Geophys. Astrophys. Fluid Dyn., 6, 2947, https://doi.org/10.1080/03091927409365786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graps, A., 1995: An introduction to wavelets. IEEE Comput. Sci. Eng., 2, 5061, https://doi.org/10.1109/99.388960.

  • Greatbatch, R. J., and et al. , 2018: Evidence for the maintenance of slowly varying equatorial currents by intraseasonal variability. Geophys. Res. Lett., 45, 19231929, https://doi.org/10.1002/2017GL076662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, B. L., M. D’Orgeville, M. D. Fruman, C. Menesguen, R. Schopp, P. Klein, and H. Sasaki, 2008: Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets. J. Fluid Mech., 610, 311341, https://doi.org/10.1017/S0022112008002656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., E. Kunze, K. E. McTaggart, and D. W. Moore, 2002: Temporal and spatial structure of the equatorial deep jets in the Pacific Ocean. J. Phys. Oceanogr., 32, 33963407, https://doi.org/10.1175/1520-0485(2002)032<3396:TASSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial pacific. J. Phys. Oceanogr., 23, 11921207, https://doi.org/10.1175/1520-0485(1993)023<1192:TAWDRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11097, https://doi.org/10.1002/2017GL075430.

  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4(2), 20 pp., http://apdrc.soest.hawaii.edu/projects/Argo/data/Documentation/YoMaHa070612.pdf.

  • Lee, G., R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O’Leary, 2019: Pywavelets: A Python package for wavelet analysis. J. Open Source Software, 4, 1237, https://doi.org/10.21105/joss.01237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., T. Farrar, S. Arnault, B. Meyssignac, W. Han, and T. Durland, 2017: Monitoring and interpreting the tropical oceans by satellite altimetry. Satellite Altimetry Over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, chapter 7, 40 pp., https://doi.org/10.1201/9781315151779.

    • Crossref
    • Export Citation
  • Lyman, J. M., D. B. Chelton, R. A. DeSzoeke, and R. M. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35, 232254, https://doi.org/10.1175/JPO-2668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., G. C. Johnson, and W. S. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37, 855872, https://doi.org/10.1175/JPO3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménesguen, C., B. L. Hua, M. D. Fruman, and R. Schopp, 2009: Dynamics of the combined extra-equatorial and equatorial deep jets in the Atlantic. J. Mar. Res., 67, 323346, https://doi.org/10.1357/002224009789954766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ménesguen, C., A. Delpech, F. Marin, S. Cravatte, R. Schopp, and Y. Morel, 2019: Observations and mechanisms for the formation of deep equatorial and tropical circulation. Earth Space Sci., 6, 370386, https://doi.org/10.1029/2018EA000438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2014: The ocean general circulation near 1000-m depth. J. Phys. Oceanogr., 44, 384409, https://doi.org/10.1175/JPO-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33, L05605, https://doi.org/10.1029/2005GL025368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2013: Geophysical Fluid Dynamics. Springer Science & Business Media, 710 pp.

  • Qiu, B., S. Chen, and H. Sasaki, 2013: Generation of the north equatorial undercurrent jets by triad baroclinic Rossby wave interactions. J. Phys. Oceanogr., 43, 26822698, https://doi.org/10.1175/JPO-D-13-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417443, https://doi.org/10.1017/S0022112075001504.

  • Rhines, P. B., and F. Bretherton, 1973: Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech., 61, 583607, https://doi.org/10.1017/S002211207300087X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohith, B., A. Paul, F. Durand, L. Testut, S. Prerna, M. Afroosa, S. Ramakrishna, and S. Shenoi, 2019: Basin-wide sea level coherency in the tropical Indian Ocean driven by Madden–Julian oscillation. Nat. Commun., 10, 1257, https://doi.org/10.1038/s41467-019-09243-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., D. L. Anderson, and R. Smith, 1981: Beta-dispersion of low-frequency Rossby waves. Dyn. Atmos. Oceans, 5, 187214, https://doi.org/10.1016/0377-0265(81)90011-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. J. O’Brien, 1996: A physically consistent formulation of lateral friction in shallow-water equation ocean models. Mon. Wea. Rev., 124, 12851300, https://doi.org/10.1175/1520-0493(1996)124<1285:APCFOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Computational kernel algorithms for fine-scale, multiprocess, longtime oceanic simulations. Special Volume: Computational Methods for the Atmosphere and the Oceans, R. M. Temam and J. J. Tribbia, Eds., Vol. 14, Handbook of Numerical Analysis, Elsevier, 121–183, https://doi.org/10.1016/S1570-8659(08)01202-0.

    • Crossref
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuchen, F. P., P. Brandt, M. Claus, and R. Hummels, 2018: Deep intraseasonal variability in the central equatorial Atlantic. J. Phys. Oceanogr., 48, 28512865, https://doi.org/10.1175/JPO-D-18-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., P. Brandt, and C. Eden, 2008: Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res., 113, C08034, https://doi.org/10.1029/2007JC004712.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and C. J. Koblinsky, 1994: Influence of mid-ocean ridges on Rossby waves. J. Geophys. Res., 99, 25 14325 153, https://doi.org/10.1029/94JC02374.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 247 247 15
Full Text Views 73 73 1
PDF Downloads 95 95 2

Intra-Annual Rossby Waves Destabilization as a Potential Driver of Low-Latitude Zonal Jets: Barotropic Dynamics

View More View Less
  • 1 LEGOS, Université de Toulouse, CNRS, CNES, IRD, Toulouse, France
  • | 2 LOPS, Université de Bretagne Occidentale, Ifremer, CNRS, IRD, Brest, France
  • | 3 Department of Earth System Science, Stanford University, Stanford, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

At low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets’ formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step toward understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that nonlinear triad interactions (NLTIs) play a crucial role in the transfer of energy toward jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave are analyzed. For realistic amplitudes around 5–20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step toward the generation of a permanent jet-structured circulation and is discussed in the context of turbulent cascade theories.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Audrey Delpech, audrey.delpech@legos.obs-mip.fr

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Abstract

At low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets’ formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step toward understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that nonlinear triad interactions (NLTIs) play a crucial role in the transfer of energy toward jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave are analyzed. For realistic amplitudes around 5–20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step toward the generation of a permanent jet-structured circulation and is discussed in the context of turbulent cascade theories.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Audrey Delpech, audrey.delpech@legos.obs-mip.fr

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Save