Spatial and Temporal Characteristics of the Submesoscale Energetics in the Gulf of Mexico

Yang Yang School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
Center for Ocean-Atmosphere Dynamical Studies, Nanjing University of Information Science and Technology, Nanjing, China,
College of Marine Science, University of South Florida, St. Petersburg, Florida

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8264-4816
,
James C. McWilliams School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
X. San Liang Center for Ocean-Atmosphere Dynamical Studies, Nanjing University of Information Science and Technology, Nanjing, China,

Search for other papers by X. San Liang in
Current site
Google Scholar
PubMed
Close
,
Hong Zhang Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Hong Zhang in
Current site
Google Scholar
PubMed
Close
,
Robert H. Weisberg College of Marine Science, University of South Florida, St. Petersburg, Florida

Search for other papers by Robert H. Weisberg in
Current site
Google Scholar
PubMed
Close
,
Yonggang Liu College of Marine Science, University of South Florida, St. Petersburg, Florida

Search for other papers by Yonggang Liu in
Current site
Google Scholar
PubMed
Close
, and
Dimitris Menemenlis Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Dimitris Menemenlis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The submesoscale energetics of the eastern Gulf of Mexico (GoM) are diagnosed using outputs from a 1/48° MITgcm simulation. Employed is a recently developed, localized multiscale energetics formalism with three temporal-scale ranges (or scale windows), namely, a background flow window, a mesoscale window, and a submesoscale window. It is found that the energy cascades are highly inhomogeneous in space. Over the eastern continental slope of the Campeche Bank, the submesoscale eddies are generated via barotropic instability, with forward cascades of kinetic energy (KE) following a weak seasonal variation. In the deep basin of the eastern GoM, the submesoscale KE exhibits a seasonal cycle, peaking in winter, maintained via baroclinic instability, with forward available potential energy (APE) cascades in the mixed layer, followed by a strong buoyancy conversion. A spatially coherent pool of inverse KE cascade is found to extract energy from the submesoscale KE reservoir in this region to replenish the background flow. The northern GoM features the strongest submesoscale signals with a similar seasonality as seen in the deep basin. The dominant source for the submesoscale KE during winter is from buoyancy conversion and also from the forward KE cascades from mesoscale processes. To maintain the balance, the excess submesoscale KE must be dissipated by smaller-scale processes via a forward cascade, implying a direct route to finescale dissipation. Our results highlight that the role of submesoscale turbulence in the ocean energy cycle is region and time dependent.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. S. Liang, sanliang@courant.nyu.edu

Abstract

The submesoscale energetics of the eastern Gulf of Mexico (GoM) are diagnosed using outputs from a 1/48° MITgcm simulation. Employed is a recently developed, localized multiscale energetics formalism with three temporal-scale ranges (or scale windows), namely, a background flow window, a mesoscale window, and a submesoscale window. It is found that the energy cascades are highly inhomogeneous in space. Over the eastern continental slope of the Campeche Bank, the submesoscale eddies are generated via barotropic instability, with forward cascades of kinetic energy (KE) following a weak seasonal variation. In the deep basin of the eastern GoM, the submesoscale KE exhibits a seasonal cycle, peaking in winter, maintained via baroclinic instability, with forward available potential energy (APE) cascades in the mixed layer, followed by a strong buoyancy conversion. A spatially coherent pool of inverse KE cascade is found to extract energy from the submesoscale KE reservoir in this region to replenish the background flow. The northern GoM features the strongest submesoscale signals with a similar seasonality as seen in the deep basin. The dominant source for the submesoscale KE during winter is from buoyancy conversion and also from the forward KE cascades from mesoscale processes. To maintain the balance, the excess submesoscale KE must be dissipated by smaller-scale processes via a forward cascade, implying a direct route to finescale dissipation. Our results highlight that the role of submesoscale turbulence in the ocean energy cycle is region and time dependent.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: X. S. Liang, sanliang@courant.nyu.edu
Save
  • Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, and K. G. Speer, 2016: Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico. Geophys. Res. Lett., 43, 10 85610 863, https://doi.org/10.1002/2016GL069405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and S. G. Llewellyn Smith, 2015: Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J. Phys. Oceanogr., 45, 272293, https://doi.org/10.1175/JPO-D-14-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., J. C. McWilliams, A. F. Shchepetkin, M. J. Molemaker, L. Renault, A. Bracco, and J. Choi, 2017: Submesoscale dynamics in the northern Gulf of Mexico. Part I: Regional and seasonal characterization and the role of river outflow. J. Phys. Oceanogr., 47, 23252346, https://doi.org/10.1175/JPO-D-17-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., M. J. Molemaker, K. Srinivasan, J. C. McWilliams, and E. A. D’Asaro, 2019: The role of horizontal divergence in submesoscale frontogenesis. J. Phys. Oceanogr., 49, 15931618, https://doi.org/10.1175/JPO-D-18-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Choi, K. Joshi, H. Luo, and J. C. McWilliams, 2016: Submesoscale currents in the northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope. Ocean Modell., 101, 4358, https://doi.org/10.1016/j.ocemod.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, https://doi.org/10.1175/JPO-D-14-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Barkan, and A. N. Garabato, 2020: Time scales of submesoscale flow inferred from a mooring array. J. Phys. Oceanogr., 50, 10651086, https://doi.org/10.1175/JPO-D-19-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., P. Klein, B. L. Hua, G. Lapeyre, and J. C. McWilliams, 2008a: Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech., 604, 165174, https://doi.org/10.1017/S0022112008001110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Oceanogr., 46, 33653384, https://doi.org/10.1175/JPO-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett., 47, e2020GL087388, https://doi.org/10.1029/2020GL087388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. R. Watts, P. Hamilton, R. Leben, and M. Kennelly, 2016: Loop Current Eddy formation and baroclinic instability. Dyn. Atmos. Oceans, 76, 195216, https://doi.org/10.1016/j.dynatmoce.2016.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., A. Lugo-Fernández, and J. Sheinbaum, 2016: A Loop Current experiment: Field and remote measurements. Dyn. Atmos. Oceans, 76, 156173, https://doi.org/10.1016/j.dynatmoce.2016.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., A. Bower, H. Furey, R. Leben, and P. Pérez-Brunius, 2019: The loop current: Observations of deep eddies and topographic waves. J. Phys. Oceanogr., 49, 14631483, https://doi.org/10.1175/JPO-D-18-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. R. Robinson, 1978: Energy analysis of open regions of turbulent flows—Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211, https://doi.org/10.1016/0377-0265(78)90009-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, https://doi.org/10.1017/S0022112081001742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holopainen, E. O., 1978: A diagnostic study of the kinetic energy balance of the long-term mean flow and the associated transient fluctuations in the atmosphere. Geophysica, 15, 125145.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2017: On the evaluation of seasonal variability of the ocean kinetic energy. J. Phys. Oceanogr., 47, 16751683, https://doi.org/10.1175/JPO-D-17-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., V. Levin, J. C. R. Hunt, O. M. Phillips, and D. Williams, 1991: Dissipation of energy in the locally isotropic turbulence. Proc. Roy. Soc. London, 434A, 1517, https://doi.org/10.1098/rspa.1991.0076.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., D. Iovino, L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, and K. Takahashi, 2012: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 43–44, 7793, https://doi.org/10.1016/j.ocemod.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 44394468, https://doi.org/10.1175/JAS-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195230, https://doi.org/10.1016/j.dynatmoce.2004.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437467, https://doi.org/10.1137/06066895X.

  • Liang, X. S., and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 5176, https://doi.org/10.1016/j.dynatmoce.2007.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2009: Multiscale processes and nonlinear dynamics of the circulation and upwelling events off Monterey Bay. J. Phys. Oceanogr., 39, 290313, https://doi.org/10.1175/2008JPO3950.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, C. Hu, and L. Zheng, 2011: Tracking the deepwater horizon oil spill: A modeling perspective. Eos, Trans. Amer. Geophys. Union, 92, 4546, https://doi.org/10.1029/2011EO060001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, S. Vignudelli, and G. T. Mitchum, 2016: Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps. J. Geophys. Res., 121, 23472366, https://doi.org/10.1002/2015JC011493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, Y. Cardona, and J. C. McWilliams, 2016: Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Modell., 101, 6882, https://doi.org/10.1016/j.ocemod.2016.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and X. S. Liang, 2017: Multiscale dynamical processes underlying the wintertime Atlantic blockings. J. Atmos. Sci., 74, 38153831, https://doi.org/10.1175/JAS-D-16-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., 2017: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/jfm.2017.294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville-Saint-Agne, France, 13–21.

  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314, https://doi.org/10.1017/S0022112009992643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., J. McWilliams, and J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Baumert, J. Simpson, and J. Sundermann, Eds., Cambridge University Press, 397–405.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 16691688, https://doi.org/10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., T. M. Özgökmen, D. J. Bogucki, and A. D. Kirwan, 2017: Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations. Phys. Fluids, 29, 020701, https://doi.org/10.1063/1.4974331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, J. Wang, H. Torres, L.-L. Fu, and D. Menemenlis, 2018: Seasonality in transition scale from balanced to unbalanced motions in the World Ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., S. T. Gille, T. K. Chereskin, and D. Menemenlis, 2016: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 2016GL071349, https://doi.org/10.1002/2016GL071349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, https://doi.org/10.1080/03091928008241178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saltsman, B., 1957: Equations governing the energetics of the larger scales of atmospheric turbulence in the domain of wave number. J. Meteor., 14, 513523, https://doi.org/10.1175/1520-0469(1957)014<0513:EGTEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017: Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans, 122, 78037821, https://doi.org/10.1002/2017JC013009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegelman, L., 2020: Energetic submesoscale dynamics in the ocean interior. J. Phys. Oceanogr., 50, 727749, https://doi.org/10.1175/JPO-D-19-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. M. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, https://doi.org/10.1175/JPO-D-10-05016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., J. C. McWilliams, L. Renault, H. G. Hristova, J. Molemaker, and W. S. Kessler, 2017: Topographic and mixed layer submesoscale currents in the near-surface southwestern tropical Pacific. J. Phys. Oceanogr., 47, 12211242, https://doi.org/10.1175/JPO-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2013: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-Ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith, and M. Lévy, 2019: The contribution of submesoscale over mesoscale eddy iron transport in the open southern ocean. J. Adv. Model. Earth Syst., 11, 39343958, https://doi.org/10.1029/2019MS001805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Jing, H. Liu, and L. Wu, 2018: Spatial and seasonal variations of submesoscale eddies in the eastern tropical Pacific Ocean. J. Phys. Oceanogr., 48, 101116, https://doi.org/10.1175/JPO-D-17-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., Z. Li, and F. Muller-Karger, 2001: West Florida shelf response to local wind forcing: April 1998. J. Geophys. Res., 106, 31 23931 262, https://doi.org/10.1029/2000JC000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., and X. S. Liang, 2017: On the generation and maintenance of the 2012/13 sudden stratospheric warming. J. Atmos. Sci., 74, 32093228, https://doi.org/10.1175/JAS-D-17-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. H. Weisberg, Y. Liu, and X. San Liang, 2020: Instabilities and multiscale interactions underlying the loop current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 12891317, https://doi.org/10.1175/JPO-D-19-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Zhang, B. Qiu, H. Sasaki, Z. Sun, X. Zhang, W. Zhao, and J. Tian, 2020: Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations. J. Geophys. Res. Oceans, 125, e2019JC015404, https://doi.org/10.1029/2019JC015404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y.-B., and X. S. Liang, 2018: On the inverse relationship between the boreal wintertime Pacific Jet strength and storm-track intensity. J. Climate, 31, 95459564, https://doi.org/10.1175/JCLI-D-18-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., and A. Bracco, 2013: Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J. Geophys. Res. Oceans, 118, 56515668, https://doi.org/10.1002/jgrc.20402.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 520 0 0
Full Text Views 1485 400 30
PDF Downloads 1359 410 35