• Anderson, D. L. T., and P. B. Rowlands, 1976: The role of inertia-gravity waves and planetary waves in the response of a tropical ocean to the incidence of an equatorial Kelvin wave on a meridional boundary. J. Mar. Res., 34, 295312.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., and M. J. Webb, 2018: The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. J. Climate, 31, 641654, https://doi.org/10.1175/JCLI-D-17-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. J., M. J. Martin, and N. K. Nichols, 2004: Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteor. Soc., 130, 873893, https://doi.org/10.1256/qj.02.109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaker, A. T., J. J.-M. Hirschi, B. Sinha, B. A. de Cuevas, S. G. Alderson, A. C. Coward, and G. Madec, 2012: Large near-inertial oscillations of the Atlantic meridional overturning circulation. Ocean Modell., 42, 5056, https://doi.org/10.1016/j.ocemod.2011.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blaker, A. T., J. J.-M. Hirschi, M. J. Bell, and A. Bokota, 2021: Wind-driven oscillations in meridional overturning circulations near the equator. Part I: Numerical simulations. J. Phys. Oceanogr., 51, 645661, https://doi.org/10.1175/JPO-D-19-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blandford, R., 1966: Mixed gravity-Rossby waves in the ocean. Deep-Sea Res., 13, 941961, https://doi.org/10.1016/0011-7471(76)90912-8.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E. S. Sarachik, 1976: Forced baroclinic ocean motions: I. The linear equatorial unbounded case. J. Mar. Res., 34, 629665.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E. S. Sarachik, 1979: Forced baroclinic ocean motions: III. The linear equatorial basin case. J. Mar. Res., 37, 355398.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, https://doi.org/10.1126/science.275.5302.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides: Thermal and Gravitational. D. Reidel, 200 pp.

    • Crossref
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Elsevier, 324 pp.

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, G. B., and W. G. Large, 1996: Numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891, https://doi.org/10.1175/1520-0485(1996)026<0873:ANIORI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and et al. , 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delorme, B. L., and L. N. Thomas, 2019: Abyssal mixing through critical reflection of equatorially trapped waves off smooth topography. J. Phys. Oceanogr., 49, 519542, https://doi.org/10.1175/JPO-D-18-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and T. S. Durland, 2012: Wavenumber–frequency spectra of inertia–gravity and mixed Rossby–gravity waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 42, 18591881, https://doi.org/10.1175/JPO-D-11-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., and et al. , 2018: Evidence for the maintenance of slowly varying equatorial currents by intraseasonal variability. Geophys. Res. Lett., 45, 19231929, https://doi.org/10.1002/2017GL076662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., and et al. , 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, https://doi.org/10.1029/2008GB003349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., A. Blaker, B. Sinha, B. de Cuevas, S. G. Alderson, A. C. Coward, and G. Madec, 2013: Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci., 9, 805823, https://doi.org/10.5194/os-9-805-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., and et al. , 2020: The Atlantic meridional overturning circulation in high resolution models. J. Geophys. Res. Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. N. Moum, and L. N. Thomas, 2016: Evidence for seafloor-intensified mixing by surface-generated equatorial waves. Geophys. Res. Lett., 43, 12021210, https://doi.org/10.1002/2015GL066472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, https://doi.org/10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreyszig, E., 1979: Advanced Engineering Mathematics. John Wiley and Sons, 939 pp.

  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1998: Seasonal cycles of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28, 923943, https://doi.org/10.1175/1520-0485(1998)028<0923:SCOMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, M. J., 1969: Dynamic response of the Indian Ocean to the onset of the southwest monsoon. Philos. Trans. Roy. Soc. London, 265A, 4593, https://doi.org/10.1098/rsta.1969.0040.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and et al. , 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1979: Observations of large-scale traveling Rossby waves. Rev. Geophys. Space Phys., 17, 19351949, https://doi.org/10.1029/RG017i008p01935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1985: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech., 17, 359409, https://doi.org/10.1146/annurev.fl.17.010185.002043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603608, https://doi.org/10.1038/415603a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D. W., 1968: Planetary-gravity waves in an equatorial ocean. Ph.D. thesis, Harvard University, 207 pp.

  • Mulholland, D. P., K. Haines, and M. A. Balmaseda, 2016: Improving seasonal forecasting through tropical ocean bias corrections. Quart. J. Roy. Meteor. Soc., 142, 27972807, https://doi.org/10.1002/qj.2869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., C. A. Stock, X. Yang, J. P. Dunne, A. Rosati, J. John, and S. Zhang, 2018: Modeling global ocean biogeochemistry with physical data assimilation: A pragmatic solution to the equatorial instability. J. Adv. Model. Earth Syst., 10, 891906, https://doi.org/10.1002/2017MS001223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavlidis, T., 1982: Algorithms for Graphics and Image Processing. Computer Science Press, 416 pp.

    • Crossref
    • Export Citation
  • Pujiana, K., J. N. Moum, and W. D. Smyth, 2018: The role of turbulence in redistributing upper-ocean heat, freshwater, and momentum in response to the MJO in the equatorial Indian Ocean. J. Phys. Oceanogr., 48, 197220, https://doi.org/10.1175/JPO-D-17-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31, 10051030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and et al. , 2018: The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett., 45, 15271533, https://doi.org/10.1002/2017GL076350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., Y. Li, J. Wang, F. Wang, S. Hu, C. Liu, X. Diao, and C. Guan, 2018: Tropical meridional overturning circulation observed by subsurface moorings in the western Pacific. Sci. Rep., 8, 7632, https://doi.org/10.1038/s41598-018-26047-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and T. J. Woollings, 2005: Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes. J. Comput. Phys., 203, 386404, https://doi.org/10.1016/j.jcp.2004.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 946 pp., https://doi.org/10.1017/9781107588417.

    • Crossref
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waters, J., D. Lea, M. Martin, I. Mirouze, A. Weaver, and J. While, 2014: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Quart. J. Roy. Meteor. Soc., 141, 333349, https://doi.org/10.1002/qj.2388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and M. J. McPhaden, 2006: Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modell., 15, 250273, https://doi.org/10.1016/j.ocemod.2005.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 201 19
Full Text Views 74 74 6
PDF Downloads 89 89 9

Wind-Driven Oscillations in Meridional Overturning Circulations near the Equator. Part II: Idealized Simulations

View More View Less
  • 1 Met Office, Exeter, United Kingdom
  • | 2 National Oceanography Centre, Southampton, United Kingdom
© Get Permissions
Restricted access

Abstract

Large-amplitude [±100 Sv (1 Sv ≡ 106 m3 s−1)], high-frequency oscillations in the Pacific Ocean’s meridional overturning circulation within 10° of the equator have been found in integrations of the NEMO ocean general circulation model. Part I of this paper showed that these oscillations are dominated by two bands of frequencies with periods close to 4 and 10 days and that they are driven by the winds within about 10° of the equator. This part shows that the oscillations can be well simulated by small-amplitude, wind-driven motions on a horizontally uniform, stably stratified state of rest. Its main novelty is that, by focusing on the zonally integrated linearized equations, it presents solutions for the motions in a basin with sloping side boundaries. The solutions are found using vertical normal modes and equatorial meridional modes representing Yanai and inertia–gravity waves. Simulations of 16-day-long segments of the time series for the Pacific of each of the first three meridional and vertical modes (nine modes in all) capture between 85% and 95% of the variance of matching time series segments diagnosed from the NEMO integrations. The best agreement is obtained by driving the solutions with the full wind forcing and the full pressure forces on the bathymetry. Similar results are obtained for the corresponding modes in the Atlantic and Indian Oceans. Slower variations in the same meridional and vertical modes of the MOC are also shown to be well simulated by a quasi-stationary solution driven by zonal wind and pressure forces.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0297.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael J. Bell, mike.bell@metoffice.gov.uk

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-19-0296.1.

Abstract

Large-amplitude [±100 Sv (1 Sv ≡ 106 m3 s−1)], high-frequency oscillations in the Pacific Ocean’s meridional overturning circulation within 10° of the equator have been found in integrations of the NEMO ocean general circulation model. Part I of this paper showed that these oscillations are dominated by two bands of frequencies with periods close to 4 and 10 days and that they are driven by the winds within about 10° of the equator. This part shows that the oscillations can be well simulated by small-amplitude, wind-driven motions on a horizontally uniform, stably stratified state of rest. Its main novelty is that, by focusing on the zonally integrated linearized equations, it presents solutions for the motions in a basin with sloping side boundaries. The solutions are found using vertical normal modes and equatorial meridional modes representing Yanai and inertia–gravity waves. Simulations of 16-day-long segments of the time series for the Pacific of each of the first three meridional and vertical modes (nine modes in all) capture between 85% and 95% of the variance of matching time series segments diagnosed from the NEMO integrations. The best agreement is obtained by driving the solutions with the full wind forcing and the full pressure forces on the bathymetry. Similar results are obtained for the corresponding modes in the Atlantic and Indian Oceans. Slower variations in the same meridional and vertical modes of the MOC are also shown to be well simulated by a quasi-stationary solution driven by zonal wind and pressure forces.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0297.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael J. Bell, mike.bell@metoffice.gov.uk

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-19-0296.1.

Supplementary Materials

    • Supplemental Materials (ZIP 38.62 MB)
Save